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Preface

The lectures on which the following notes are based were given in various
%orms in University College, London, from about 1964 to 1969. Generally
they were an optional undergraduate course, containing the substance of
Chapters .1-6, and part of Chapter 8, Once or twice they were given to
graduate students in geometry, and then included also the bulk of Chapters
9-13. Chapter 7, with the part of Chapter 11 which depends on this, and
the cubic transformations in Chapter 8, never figured in the course, but
it seemed to me very desirable to add them to the published notes. There
is of course much more that I would have liked to include (such as trané«
formations at least of order 5, some study of the connexion between modu-
lar relations and the subgroups of finite index in the modular group, a
general examination of rectificatior problems, and the pafametrisation

of confocal quadrics and of the tetrahedroid and wave surfaces); buta
limit of length is laid down for this series of publications, which I fear I
have already strained to the utmost.

In my treatment of elliptic functions I have tried above all to pre-
sent a unified view of the subject as a whole, developing naturally out of
the Weierstrass function; and to give the essential rudiments of every
aspect of the subject, while unable to enter in very great detail into any
one of these. In particular I have been concerned to emphasize the depen-
dence of the properties of the functions on the shape of the lattice; it is
for this reason that the modular fﬁnction is introduced at such an early
stage, and that equal prominence is given throughout (except in the con-
text of the Jacobi functions) to the rhombic and the rectangular lattices.

The treatment of the theta functions will be seen to be rather slight.
They are in themselves a large subject, of which our study is in a con-
siderable measure independent, since our approach (based on Neville's) to
the Jacobi functions obviates any need for the theta functions as a pre-

liminary, except for the expression of invariants such as k, K, J in
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terms of 7 or q, i.e. in terms of the lattice shape.

I have kept the analytic apparatus required to 2 minimum, largely
because I am no expert analyst myself; all that I assume ought, I think,
to be familiar to any graduate or third-year honours student,  and is to be
found in any such general textbook as Whittaker and Watson [43] or Copson
[5]. For the study of elliptic curves I have of course had to assume some
knowledge of algebraic geometry. The general theory sketched in Section
85 can be read up in detail in such works as van der Waerden [38)] or Hodge
and Pedoe [21]; and the properties of the genus used in Section 89 in any
book on algebraic curves, such as Walker [40] or Semple and Kneebone
[35]. For any assumed properties of the plane cubic and twisted quartic,
probably the best sources are still the two -cllé.ssics of Salmon [32, 33],

‘now available in modern reprints; and for fhe finite groups V, T, O etc.

perhaps the easiest reference is my own monograph | 9 ].

In conclusion, I would like to express my gratitude to the London
Mathematical Society for making this publication possible; to the general
editor of the series, Professor G. C. Shephard, for his patience; to
Dr D. G. Larman for assistance with the bfbliography; and particularly
to my wife for her help in reading the proofs.

Istanbul, 1971 Patrick Du Val
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1- Introductory

For any complex number z =x + iy (x, y real, i? = -1) we
define Re(z) = x, Im(z) =y, lz] = (x* + yz)%, z=x-iy. ¥ y=0
(i.e. if z=12), z isreal, if y #0, 2z is imaginary, if x=0, z is
pure imaginary (note that 0 is pure imaginary without being imaginary) .
and if lz| =1, z is unimodular. The real and pure imaginary axes in
the Argand plane are horizontal and vertical respectively.

Lattices. A lattice £ of complex numbers is an aggregate of
complex numbers with the two properties: (i)  is a group with respect
to addition; (ii) the absolute magnitudes of the non-zero elements are
bounded below, i.e. there is a real number k> 0 suchthat |w| =k
for all w # 0 in §. Every lattice is either (i) trivial, consisting of 0
only; (ii) simple, consisting of all integer multiples of a single generating
element, which is unique éxcept for sign; or (iii) double, consisting of
all linear combinations with integer coefficients of two generating elements
Wy W, whose ratio is imaginary. These are not unique; if W, 0,
generate £, so do

w' = pw. + qw w =rTw + sw
1p1q 2 1s

2’ 2!

where p, q, r, s are any integers satisfying ps - qr = *1. It is usual
however to require w,w, vto be so ordered that Im(wz/wl) shall be
positive; and if wi, w; are to be similarly ordered, this requires

ps - qr = +1.



2. Lattice shapes

If Q is any lattice, and m any non zero complex number, mQ
denotes the aggregate pf complex numbers mw for all w in . This is
also a lattice, which is said to be similar to ; similarity is an equiva~
lence relation between lattices, an equivalence class being a lattice shape.
All simple lattices are similar, i. e. constitute one lattice shape. - The
lattice points (i. e. elements of the lattice, represented ag points in the
Argand plane) are (for a simple lattice) at equal intervals along one line
through the origin, but in general (for a double lattice) are the vertices
of a pattern of parallelograms filling the whole plane, whose sides can be
taken to be any pair of generators. The lattice point patterns for similar
lattices are similar in the elementary sense.

T denotes the aggregate of complex numbers w for all w in &;
T is also a lattice. If = Q, § is called real. This is the case if and
only if either: (i) @ is simple, its generatdr (and hence all its elements)
being either real or pure imaginary; (ii) generators can be so chosen
that w fs real and w, pure imaginary, in which case § is called rect-
angular, the lattice points being the vertices of a pattern of rectangles,
whose sides are horizontal and vertical, i. e. parallel to the real and
imaginary axes; or (iii) generators can be chosen which are conjugate.
complex, in which case § is called rhombic, the lattice points being the
vertices of a pattern of rhombi, whose diagonals are horizontal and verti-
cal. Any lattice similar to a rectangular o;‘ rhombic lattice is also rect-
angular or rhombic, but is only i'eal if the sides of the rectangles (diagonals
of the rhombi) are horizontal and vertical. The real rectangular or rhom-
bic lattice will be called horizontal or vertical, according as the longer
sides of the rectangles (longer diagonals of the rhombi) are horizontal
or vertical.

Besides the simple lattice, there are two special lattice shapes:
(i) square (ordinary squared paper pattern); this is both rectangular and
rhombic, and may be said to be in the rectangular or rhombic position if
the sides or diagonals respectively of the squares are horizontal and
vertical (it is real in both cases); (ii) triangular (pattern of equilateral

triangles filling the plane); this is rhombic in three ways, a rhombus

c oo
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(with diagonals in the ratio +3:1) consisting of any two triangles with a
common side. Every lattice satisfies © = -; the only cases in which
2 = k@, with k # +1, are the square lattice (2 = if2) and the triangular
lattice (2 = € , where € is a primitive cube root of unity; we shall
throughout denote these cube roots by €, €? instead of the more usual

w, wz, to avoid confusion with the use of w for an element of a lattice).
3. Residue classes

If z is any value of a complex variable, z + Q denotes the aggre-
gate of values z + w for all w in the lattice ©. This aggregate is called
a residue class (mod ). The residue classes (mod ) form a continuous
group under addition, defined in the obvious way, namely
(z + Q)+ (w+ Q) =(z+w)+ Q. Q itself is a residue class (mod ),
the zero element of the group.

By a fundamental region of © we mean a simply connected region
of the Argand plane which contains exactly one member of each residue
class (mod Q). If  is the trivial lattice, each residue class consists
only of a single value of z, and the only fundamental region is the whole
plane. If  is the simple lattice génerated by w, afundamental region
is an infinite strip, bounded by two parallel lines, one of which is the locus
of z + w for all z on the other; these bounding‘ lines need not be per-
pendicular to w, nor straight, though it is usually convenient to take them
s0; but they must not intersect. One of the two lines is included in the
fundamental region, and the other is not, i. e. the strip is closed on one
side and open on the other. H Q isa double lattice, a fundamental region
can be chosen in many ways; the simplest, and usually the most convenient,
, (any
pair of generators), including one of each pair of parallel sides, and one

is what is called a unit cell, i. e. a parallelogram with sides W, W

vertex, but excluding the rest of the boundary.

We obtain a topological model of the residue class group by identi-
fying the points congruent (mod ) on the boundary of the fundamental
region, i. e. joining up the open edges to the corresponding closed edges.
For the simple lattice, identifying the points z, z + w throughout the

bounding lines of the strip, we obtain an infinite cylinder, with generators



perpendicular to w. This is topologically equivalent to a sphere with two
pinholes, corresponding to the open ends of the cylinder (compare the
Mercator map of the sphere, rolled up thus into a cylinder, on which every
point of the sphere is mapped uniquely, except the two poles). For the
double lattice, identifying points z, z + w_ on the sides of the unit cell
parallel to w, we obtain a finite cylinder of length |w1 | with ends per-
pendicular to its generators; to identify corresponding points on these

two ends, the cylinder must be bent round (and also twisted, unless the
sides of the unit cell are perpendicular, i.e. unless  is rectangular) to
form a ring surface or torus.

In particular, the torus
x=(a+bcos ¢)cos 8, y=(a+ bcos ¢)sin b, z=Dbsin¢,
o + yz +22+a2 - p?)? = aa(x? + yz)

(a2 > b > 0), obtained by rotating the circle

(x - a)2 + 22 =‘b2, y=20

about the z axis, is not only a topological model of the residue class
group, but a conformal model of the fundamental region, for a rectangular
lattice whose generators satisfy’

wz/w1 = ib/,/(a2 - bz) .

This means that the angle between the transverse common tangents of the
two circles (x % a)2 +22 = b2, which are the section of the torus by the
meridian plane y = 0, is equal to that between the diagonals of the rect-
angular unit cell of Q. '

Procf. - The element of arc on the surface is given by
ds? = (a + b cos $)2d6° + b2dg’ = (a + b cos 9)°(d&” + an?),

where £= 6 and

_ [ bdo _ 2b
n=Jla¥bcos¢ J(az-bz)

tan” (Y E32) tan £9) ,



.

so that the mapping of the point (6, ¢) of the torus on the point with
cartesian coordinates (£, ) thus defined in a plane is conformal; and
the torus, cut open along the meridian 6 = +7 and the parallel ¢ = 7,
is mapped (1, 1) on the rectangle between the lines

E=z2m, 7 =+br/(@° - b?),

Fhe fundamental region in question. //

No surface is known in three-dimensional Euclidean space, on
which the residue class group modulo a non-rectangular lattice can be
mapped in this way, so as to give at the same time a conformal map of
the fundamental regién. (Such a surface exists in eight-dimensional
Euclidean space, but this is beyond our scope.)

4, Summation over a lattice

If Q is any lattice and f(z) any function of a complex variable,

we shall denote by ¥ f(w) the sum of f(w) over all elements w of £,
Q
and by }'f(w) the sum over all non-zero elements, i.e. the same sum
Q

with the term for w = 0 omitted.

Theorem 1.1. For any lattice Q and any integer n> 2,

sn(n) = Z'w'n converges absolutely.
Q

<«

Proof. It is well known thatfor n> 1, 3 r " converges
r=1
absolutely; denote this sum by S, (it is in fact the Riemann zeta function

£(n); but the use of the letter { here is unacceptable, since in the context
of elliptic functions this letter has a quite different but eoiually well estab-
lished meaning, to which we shall come later). I Q is simple with
generator w, for even n, Sn(ﬂ) = Zw"nsn, znd for odd n, 'Sn(Q) =0,

as the terms (rw)'", (-rw)-D cancel. K Q is a double lattice, the
lattice points can be distributed into sets lying on the perimeters of a
sequence of concentric parallelograms, similar to the unit cell, those

on the r'? perimeter being of the form pw +qw , where Ipl, la| voth

=r, and at least one of them = r. Denote by } f(w) the sum of terms
r
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with w onther h perimeter; then J'f(w)= 2 I f(w). Now if h is the
Q r=1lr

lesser diameter of the unit cell perpendicular to an edge, every w on the

i rth perimeter satisfies |w| = rh, the inequality being strict for most of

them; and they are 8r in number. Thus J le-n < 8r(rh)-n, so that the
o T
series ) ) |w |_n is majorised by the absolutely convergent series
r=1r

gh™ " 2 rl-n, and is thus itself absolutely convergent. //

= ];I‘he quantities S (9) thus defined clearly satisfy the homogeneity
property S (kﬂ) =kx"s (Q), for all complex numbers k # 0 a.nd all
integers n > 2, since every term in the series on the left is k" times
the corresponding term in-that on the right. It follows that if n is odd,
S (Q) = 0, for every lattice £, since Q=-9, S (Q) =8 (-Q) = -8 (Q)
Similarly, if Q is square, as =i, S (Q) = 0 for a.ll n not d1vi81b1e
by 4, and if @ is triangular, as Q=¢€ {23 Sn(Q) =0 for all n not
divisible by 6. If  is real, Sn(Q) is real for all n, conjugate complex
elements of the lattice giving rise to conjugate complex terms in the sum,
and real elements to real terms; and in general Sn(ﬁ) = 'S—n'(ﬁ)_

The simple lattice generated by w can be regarded as the limit

of a double lattice, of which one generator w =w remains constant, and
the other w, varies continuously in such a way that Im(wz/wl) tends to
infinity, as all the lattice points except the integer multiples of w recede
to infinity, leaving the plane empty of lattice points except those of the
simple lattice. The simple lattice will therefore be called a degeﬂerate
double lattice.

Theorem 1. 2. When a double lattice £, varying continuously,

tends to the degenerate limit, with generator w, Sn(Q) tends, uniformly

in Re(wz/wl), to the limit 2w'nsn, its value for the simple lattice.

Proct.' Denote w, /c-)1 by 7; on account of the homogeneity, it
is sufficient to prove the theorem for the lattice QT, generated by , 1, 7.
Now for any even n, pairing off the equal terms for w, -w, we can write
© 0

s@)=2 +2% I (+aqn"
n T
q=1 p=-=



Now let k be any integer. For each value of q, we can divide the values
of p into sets of kq consecutive integers, according as Re(p + q7) lies
between consecutive multiples of kq. If Im(7) > k, whatever Re(7) may
be, for the two such sets of values of p defined by

rkq = Re(p + q7)kq, < (r + 1)kq, -(r + 1)kq < Re({p + q7) < -rkq

we have |p + qu > kaqvy(1 + rz), so that for each value of q,

3 tan?|< et 3 @+ )"
p=—°° r=0

1
<2002 4,

l - .
replacing (1 + r’) 2" by (r-1) " in all but the first two terms, since
(r - 1)2 < 1+ r? Hence
23 Y @+ "<k "‘sn 1(1+2“’=’“+sn),
q:l p:— (] -
irrespective of the value of Re(7). Thus by taking Im(7) greater thana
sufficiently large integer k, we can make

s (@) -2s |

as small as we like, uniformly in Re(7); the theorem is thus proved for
QT, and follows immediately for any Q= wIQT. V4

5. Functions and periods

We recall that a function f(u) of a complex variable u is analytic
o0
at u= a if it has an expansion as a power series f(u) = X cr(u - a)r,
r=0

with constant coefficients ¢ , ¢ converging absolutely and uniform-

o’ "1
ly in some circle |u-al < k, where k> 0. f(u) is meromorphic at
u = a if for some integer n, (u- a)™(u) is analyticat u=a; if n> 0

is the least integer for which this holds, f(u) has an expansion

n 0
fuy= T bu-aT+ 2 c-a,
r=1r r:Or



with br # 0; in this case u=a is a pole of f(u), of order n; the terms
n . ,

N br(u - a)T are called the infinite part of the function f(u), -bn its
r=1 :

leading coefficient, and b L its residue, at u=a. (This well established
use of the word residue has of course nothing to do with residue classes,
to which unfortunately we occasionally have to refer in the same contexts. )
Similarly u=2a is a zero of order n of f(u) if f(u) is analytic at u=a,
f(a) = 0, and n is the greatest integer such that (u - a)'nf(u) is analytic
at u=a, i.e. h is the first non-zero coefficient in the expansion of

o0
f(u) at u = a, which is accordingly of the form f(u) = 2 cr(u - a)r.

. r=n
A function is said to be analytic or meromorphic in a given region,

or in the whole plane, if it is so at every point of the region or of the
plane. I f(u) is analytic and non-zero at any point, in any region, or in
the whole plane, so is ?%65 ; if f(u) is meromorphic, so is le , the
poles of each being the zeros of the other, and of the same order. The
poles of a function meromorphic in any region are a discrete set, i.e.
for each pole, the distances of other poles from it are bounded below;
and if f(u) is meromorphic in any finite region, including its boundary,
f(u) can only have a finite number of poles in the region. As f(lﬁf is
also meromorphic, f(u) can only have a finite number of zeros in the
region; and as f(u) - ¢ is meromorphic (for any constant c) f(u) can
only assume a given value c in a finite set of points in the region.

A period « of a function f{u) is a constant such that
f(u + w) = f(u) for all u. The sum of two periods is also trivially a
period, and if w is a period, so is -w. Thus the periods of any function
form a group with respect to addition. On the other hand, unless the
absolute magnitude of non-zero periods is bounded below, the function
must be constant in any region in which it is differentiable, since
S(—u—%)—'—f(—u)- = 0 for some arbitrarily small but non-zero values of h.
Thus the periods of a non-constant meromorphic function must be a lattice.
Zero is of course a period of every function; if it is the only one, the
lattice of periods is the trivial lattice, and the functipn is called non-
periodic. If a function has a simple or double lattice of periods, it is
called simply or doubly periodic. Familiar examples of simply periodic

functions are sin u, tanu, eu, with simple lattices of periods generated



by 2w, @, 2im respectively.
6. Definition

An elliptic function is a function of a complex variable, which is
meromorphic in the whole plane, and doubly periodic. Since it has the
same value in all points of any residue class (mod ), where Q is its
lattice of periods, it can be thought of as a function of the residue class,
rather than of the individual value of u, i.e. a function of position on the
torus model of the residue class group rather than of position in the plane.
Before proving (by construction) the existence of some functions with
these properties, it is convenient to prove some elementary consequences
of the definition, assuming that such functions exist.

7. Liouville's theorem

This states that any function which is analytic and bounded in the

whole plane is a constant. Also, a function which is analytic in any finite

region (including its boundary) is bounded in that region. Hence, an

elliptic function which has no residue classes of poles is bounded in the

fundamental region, and so in the whole plane, and is accordingly a con-

stant. This principle is applied in two main ways to elliptic functions:

Theorem 1. 3. If two elliptic functions have the same lattice of

periods, the same residue classes of poles, and the same residue classes

of zeros, of the same order in each case, the ratio of the two functions is

a non-zero constant.

Proof. If f(u), g(u) have either zeros or poles of the same order

at u=a, fg%)) is analytic and non-zero at u=a. //

Theorem 1.4. If two elliptic functions have the same lattice of

periods, and the same residue classes of poles, with the same infinite

part in each pole, the functions differ by a constant.




Proof. If f(u), g(u) have the same infinite part at u = a,
f(u) - g(u) is analytic there, i. e. has no pole. //

8. Contour integration theorems
For any function meromorphic in a simply connected i‘egion R

bounded by a closed contour C, we recall the three classical theorems
on integration round the contour C: Let f(u) be meromorphic in R,

with zeros of orders m, ..., mp at u= a, ..y By and poles of
order n, ..., noat at u=">b YL bk, with residues Ty -e.y T TES-
pectlvely, all these zeros and poles being in R but none on C. Then
v k
1. IC f(u)du = 27 7 T
=1
n BN (3 m - 3 n)
’ C 1) s B
=1 j= 1
h
]
. IC-“%-((‘-’))-‘EE = 2ni( 3 mga, - 2 nb.) .

From this we deduce

Theorem 1.5. Let f(u) be an elliptic function with the lattice @

of periods, zeros of order m, ..., my in the residue classes
a1+$'2, Ceey ah+9, and poles of order n, ..., My in the residue classes
b1+ﬂ, ceey bk+9., with residues Ty ooy T respectively. “Then
k
1 Sr.=0;
=1
h k
.. 7 m=2n
11
h k
m Y ma = E n.b. (mod Q) .

Proof. Take the contour C to be the boundary of a unit cell,
starting from a chosen point u = ¢, and travelling along straight lines to

u_.c+w1, ctw +w2, c+w2, and back to u = c inturn, c being

1
chosen so that the path does not pass through any zero or pole. If ¢(u)

is any function of u

10



fopan = 157 (6w - putw Nau + T2 (p(utw ) - glu))du .
(8.1)

If f(u) is an elliptic function with period lattice @, generated by @,

w_, sois )’ and in both the integrals I, II, the integrand in both terms
on the right in (8. 1) is identically zero, which gives the results I, II of

the theorem. As for integral III, —fu%l()l—lz is not of course an elliptic
function; but as in this case ¢(u) - ¢(u + wz) = -wzf'(u)/f(u), the first
term on the right in (8. 1) becomes

-w, [571 4 10g 1) = w, (log £(e) - Tog f(c + @) ;
and as f(c + wl) = f(c), the difference between their logarithms as
obtained from the integral must be an integer multiple of 27i, say -2qmi;
thus the first term in (8. 1) reduces to 27i. qw . anq similarly the other
term reduces to 2ui. pwl. Thus the integral III is equal to 27i times an
element pw, + qw, of @, which proves the result III of the theorem. //

9. Order of an elliptic function

Just as an s-ple zero of a polynomial f(x) is comnionly and con-
veniently regarded as being s coincident zeros of f(x), or roots of the
equation f(x) = 0, and this convention enables us to say that an equation
of degree n has exactly n roots, when we make due allowance for
coincidences; so an s-ple zero or pole of any meromorphic function is
conventionally to be regarded as s coincident zeros or poles; and in
the case of elliptic functions, with period lattice 2, f u=a is an s-ple
zero or pole, so is every member of the residue class a + , which is
regarded as s coincident residue classes of zeros or poles. With this
convention the results II, Il of Theorem 1. 5 can be restated as

Theorem 1. 6. An elliptic function f(u) assumes any value c¢

in a number n of residue classes which is independent of c¢ and charac-

teristic of f(u), making due allowance for coincidences among these n

residue classes for some values of ¢; moreover, the sum of these n

residue classes is independent of c.

11



