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FOREWORD

Professor Paul Erdds of the Hungarian Academy of Sciences visited Japan for
about two weeks beginning on January 23, 1984. Although his name has been
well-known in Japan and there are quite a few Japanese mathematicians who have
met him before in Europe, in U.S. and elsewhere, he had never visited Japan up
until then, and accordingly, many of us were very happy that his long awaited
visit to Japan had finally become possible. In order to commemorate this happy
occasion a number of conferences were organized; one was held in Tokyo on
January 27-28 devoted to analytic number theory and related areas, another in
Okayama on January 30-31 dealing with the connection between number theory
and analysis, and the third in Kyoto on February 1 concentrating on combinatorics.

In these proceedings we put together the invited lectures delivered by a number
of mathematicians at the above mentioned conferences, and papers contributed
by ‘ other mathematicians attending the conferences. Some of these works are
concerned with problems in analytic and elementary number theory, while others
treat problems in combinatorics related with number theoretic questions; needless
to say, the development of many of these questions was influenced one way or
the other by Professor Erdos. We should mention that all the papers included in
this volume had been sent to appropriate referees, and that they received the

approval of the referees before they were accepted for publication by the editorial
committee.

For the editors,
J. Akiyama
Y. Ito
1. Shiokawa
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n~d EXP (2xinfe)
1

ON THE CONVERGENCE OF

n

e 8

M. Akita (Okayama University)
S. Iseki (The National Defense Academy)
T. Kano (Okayama University)

0. In [1] it is proved that nzlnﬂsin(nse) is convergent for all 6>0
if 1<B<2a. Now in this paper we improve it to prove the following theorems.

We note their connection with [4].

Theorem 1 Ifl>a>é;=max(%-p(8-l),8-1),2>B>1, and if
v=8/(B-1) is not an integer, then

2

(1) n-aexp(Z*ninBe) (1= -1)

1e~8

n=1

.
converges for all 8>0, where p = (600{2+\»]210g[2+\)])-1.

Theorem 2 Ifl>u>£=mx(—§-—p'(e—1), B-1 ), 2>8>1,

v-1

v=B/(B~1) is an integer and @ is irrational, then (1) éonverges, where

1 1
p' = (1+ ) if v>12,
( 3(v-1)210g(12(v—1)v/1)) 30(v-1)

T 1
p' = (1+ ) if 3gv<ll.
( 3-112103(12‘11‘12/1)) 30-11

Here 1 is defined in Lemma 4.
Theorem 3 If 0 <a <1, 2a¢ 8 <2, B > 1 and v=B/(B-1) is an

integer, then (1) diverges for some 0>0, where 9“-1 is rational: for

example, if 6=K6(8-1) ((3—1)8—15-B

and Ko is a positive integer, or if 6=



(aO/pu)-(B_l)(8—1)8_18_8, p is a prime, a; and u are positive integers, >l

ugv, (ag,p)=(v,p)=1.

Theorem 4 If Oca<l, 2>8>-2042, v=8/(8-1) is an integer and 8" 1is
rational, then (1) converges for es(aolp)-(s'l)(8—1)8_13_8, where p is a
prime, a, is a positive integer and (ao,p)=(v,p—1)=1-

1. Lemmas.
Lemma 1 (cf.[5)) We put

b
(2) I1(X) = {aexp(ixp(c))dc.

In (2), a, b and the function p(t) are real and independent of the
positive parameter X, a being finite and b(>a) finite or infinite. The
function p(t) is required to satisfy the properties (i)~ (i1i) below:

(i) In (a,b) p'(t) is contimous and positive. ;

(ii) p(t) can be expandéd in powers of t-a with a nonzero radius of
convergence. p'(a)=0. Then

3 p(t) = p(a) + | p_(t-2)%2, where p # 0.
s=0
The above expansion is the Taylor series.
(iii) p(b) = lim p(t) is finite and Po(t) = 1/p'(t) tends to a

t>b-
finite limit as t =+ b-.

Otherwise, p(b) = +=, lim Po(t) = 0 and (2) converges at t = b
t+b~- :
uniformly for all sufficiently large X.

Then we have

1

2ot

1(X) = exp(iXp(a)) exp(GITE) + 600 + 0 1f p(b)es=,



I(0) = exp(iXp(a))exp(GUT ) + 80 Af p(b)mse.

PoX

500] < tley ;@] + oy ;] + v, (1a, ©31x7?,

where Q l(t) = Po(t) - 1/(% p(t)-p(a)), and Y. denotes the total

variation of the function Q1 l(t).
’

Lemma 2 Assume the conditions and notations of Lemma 1. Let p'(t)
be negat_ive in (a,b), and when b is finite, p'(b)=0 and let
(4) p(t) = p(b) + ): r (b- )2 » where r, # 0.
s=0 §

Then we have

+ 8K + oY,

I(X) = exp(iXp(b))expG1IT(3)

Z‘Irox

Proof In the proof of Lemma 1, put v=p(t)-p(b) ((3.1) of [5]), and
we can prove this lemma similarly.

Lemma 3 (A variant of Theorem 5 in Chapter IV of [2]) Let h and Q

be integers (h>6 Q22), and let g(x) be real-valued and have continuous

derivatives up to the (h+1)th order in [P+1, P+Q]

Suppose there exists a A €(0,1) such that for all x €[P+1,P+Q]

. (h+1)
(x)
> e i
(h+1) " (hH1)
or the same for -g (x) in place of g (x), where
(6) . 1-1/3 < -1



Then

PHQ
) [ ] ™8™ | gexp(ch(logZn)ial ™,
n=P+1

2

where p = (600h"log h)-l, and ¢, K are absolute constants.

The proof can be easily obtained if we choose

n = (9nllog W)L,

ym(L=n)/ ()

+
[

q =

in Theorem 4 in Chapter IV of [2].

First, in page 104, line 10, we replace

2
(2k+3) ( t;% +1) ¢

A
A

k@@ + @) < 4ka,

2
(2X(kf1)Q+l) G+

since Q ¢ A_l, 921, k27

by

A
an

2q 2
(22 (h#1)Q+1) ( E:% +1) 3h(3q + 1) < 3hq,

2
(2h+3) ( E;% f 1)

since Q ¢ Y >2, h a4
Next, in page 104, line 1 below, we replace
f' 2
1—1’(21)(AkA-kqalz'k(k+1)eclk(1°3 k))1/(21)+81kqu+1q +q

lel ¢ 4@

A

by

2
< ‘Ql-ll(21)(3hA-hq3I2-h(hf1)eclh(log h)}1/(21)+ 8Ihth+1Q +q.

a
A



Thirdly, in page 105, lines 2~ 4, we replace

qa< th(k+l)’ k+l n

Aq <A

<Q™,

-(k+1) .-4n

k+l > 2—(k+1)xn > 2 Q

Aq
by

q s 2Q3/(h+l), Aqh+1 < 2h+lkn < 2h+1Q-?

Fourthly, in page 105, line 6, we replace

1-1/(21) 2nk/1

< ¢ emp(c k(1000 Q2 193/ (G+1)1)

o
A

+ srkql™" 4 @/ (kD)

by

1—1/(21)Q3nh/(21) 9/(41(h+1)) + 2h+l»"h 1-n

ic| Q

BA

¢,exp(e;h(log h))Q Q

+ 2Q3/(h+1).

Finally, in page 105, line 8, we replace:

- 3a) ™) - 20k

"V

[

by

9
IS

h

v

Nt
hﬂu

Lemma 4 (cf.[7] Chapter VI Theorem I) Let Q, n(311) be positive

integers. Let

‘n+1 + ceeee ¥ alx,

£(x) = An+l



where an+1(#0),...,al are real, and let

S1 = g exp(2nif(x)).
x=1

Let r be one of the numbers n+l,...,2, and suppose that

a_ = § + % ((@,0)=1, |ulgl and ¢>0).

r
q
Then
5, << ™,
where p' = ( 3 L1 (1 + 3%; ).
- \3n’1log12n(n+1) /1)

Here t is defined in terms of q and Q by

1) a=cyQ . for 1<qgcQ,

(1) t=1 for cQ £ q ¢ Q™ L,
n-t n-1 n

(1i4) q = cZQ for c2Q < qc< CZQ R

where ¢y» €, are any selected positive constants (e.g. clscz-l).
Thus 0 < 7 < 1 always.
Lemma 5 (cf.[3] Theorem 185) If £ is irrational, then there are
infinitely many fractions p/q which satisfy
lpfa - & < a2 ((p,)=1).
Lemma 6 (cf.[7] Chapter 11 Lemma 4) Let u, a and n(;3)be integers.

. Let p be a prime, and suppose that l<u<n and (a,p)=(n,p)=1l. Then

u
P~ -
S(a,p") = } exv(Zﬂigax“) = L
x=0 p
Lemma 7 (cf£.[7) Chapter II Lemma 5) Let p be an integer and

> n(=3). Then

s(a,p") = p" Us(a, 0" ™.



Lemma 8 (cf.[7] Chapter 1I Lemma 3} Assume the conditions and

notations of Lemma 6. Then

/2

Is(a,p)| < (6-1)p™’?, where 8=(n,p-1).

Lemma 9 (cf.[7] Chapter 11 Lemma 1) For any integers L PEREREL ™

which are relatively prime in pairs, we have
S(al,ql) . ..S(ak,qk) = S(a1Q1+.. .+aka,q1..-.qk),

. - a -1 -
where QB LI A for 8 = 1,2,...,k.

2. Proof of Theorems.

Proof of Theorem 1 Put
N
(8) S(N) = ] exp(2nif(n)),
n=1
8

where f(x) = 6x (1/2:x§N) and 1<B<2.
Since f'(x) is strictly increasing, there exists an a_ €[1/2,N] such
that f'(ar) = r-1/2, where r is a positiﬁe integer. ‘All a belong to the

set { a,>0,.. }, where M = [BSNB-I] > 1.

2%y Py

Then we have

(9 ' s®M= § + J o+ T+ 1,
nLey RS % Cwa SN

where any empty sum is zero.

Since £"(x) > 0 and f'(al) = %, we have

l£re | ¢

o=

1
for 3 < xg ay.

By van der Corput’s lemma (cf.[6] Lemma 4.8 and Lemma 4.2), we have



a

1
] exp(2rif(n)) = [ exp(anif(x))dx +  o0(l)
nga, 1/2

=O< max ——1——) + 0(1).
1/22x<N \f £"(x)

Similarly, since exp(2wif(n))=exp(2ni(f(n)-(M+1)n)), we have

] exp(2nif(n)) -0( max ——1—> +  oQ).

uu+1<n:N /2§x§N £"(x)

Therefore it follows from (9) that

M
(10) s = Is. o+ O max —L—\ + o),
r=1 1/2gxgN \ £"(x)
where Sr = Z exp(2nif(n)).
°r<n§ar+1
Now we have
pax ——— L1 << 6—1/2N1—6/2’
/2exsN \JE"(x)

since f"(x) = B(B—l)exs—z. Let us write

a

r+l %re1
s, = (s, - [u exp(2ni(f (x)-rx))dx ) + Io. exp (2ni(f (x)-rx))dx.
r r

Then we have, by van der Corput’s lemma (cf.[6] Lemma 4.8),

S, ) exp(2ni(£(n)-rn))

a_<n<a
r = r+l

a
= f r+1exp(Zwi(f(x)-rx))dx + o(l)
a

r



(11) = I+ 0(1), say.

We now consider the integral 1., and put F(x)=2n(f(x)~rx). Then

F'(x)= 2n(f' (x)-r) = 2n(BoxPLor),

F"(x)= 218(8—1)6x8-2 >0 for 0 ¢ x < a

and F'(x) < F'(ur) = -1 <0 for 0 < x <a .

Hence it follows from van der Corput’s lemma (cf.[6] Lemma 4.2) that

. op
(12) I S exp(2si(£(x)-rx))dx | ¢ %.
0
Similarly
)
(13) ‘ g“P(Zﬁi(f(x)—rx))dx l < %.
"tql )
We put
00
- S exp(2ni(f(x)-rx))dx,
°
and then

Therefore it follows from (12),(13) that

(14) lr = Jr + 0(1)._ .

In thelintegral Jr we put

-1/(8-1) 8/(8-1)_

X = %t, where X = 6



10

(15)

Then
oa .

id = ( exp(2niXp(t))dt,
0

B

where p(t) = ¢ - ¢,

C=t0

(16)

(17)

(18)

where

We divide the range of the above integral at the statiomary point

gL/ (B=1) ' hac is, p' (tg)=0.

Hence we have

t ©0
o0 Lo

g exp (2niXp(t) )dt = + S
0 [\] to

By Lemmas 1 and 2, we have

J(l) = exp(%i)exp(ZﬂiXp(to)%[zj;l—- + O(X_l),
K

J(2) = exp(%i)exp(ZniXp(to))ﬁ 1 + O(X—l),

2

1/(B-1)
po' .

= Lea-
£ = 2(8 1)8

Therefore it follows from (15),(16),(17),(18) that

Tt e

X . 1 -1
= ;exp(%l)exp(ZniXp(to)X[§4"—— + 0(r )

- Ji;exp(%i)(B_l)-1/28-1/(28-2)9-1/(28-2)r(2-8)/(28-2)exp{_2ﬂi(B_l)

: 8*3/(8-1)9—1/(B-})IB/(B-l)}

+ o L.



(19) - a0V (28-D) (2-8)/(28-D) o B/ (B-D)
where we have put
-1/2_-1/(2B-2
A= 20 expGa)(s-1) /27 2671
B = _(B_I)B-e/(s—l)’
K = po~L/(B-1)
Then we have to estimate
¥ (2-8)/(28-2) 8/(8-1)
(20) Ty = I « exp(2niKr ).
r=1
Put
¥ 8/(8-1)
(21) UM = z exp(2niKr ),
r=1
then we have, by partial summation,
(22) TH << M(Z-B)/(28—2)mx luvl .
v+l ~
Next we shall .estimate UH‘ o
8/(8-1)

When v=8/(B-1) is not an integer, we put g(x)=Kx

exists a positive integer h such that

(h+1)

(htD) ! I

where C is a constant and 0 < y < 1.

)y + oD,

. Then there

"



