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Preface

Knowledge of the molecular biology of early development derives from
a tangled skein of measurements carried out on a number of diverse
organisms. My ultimate objective in writing this second edition of “Gene
Activity in Early Development” has been to review critically the many
observations which are now available in order that a coherent view of at
least some areas of this field might emerge. This is a nearly impossible
endeavor, and at best can be only partially successful. In order to achieve
a comprehensive picture, it has been necessary in many places to rely on
my interpretations where direct knowledge is lacking and to choose be-
tween incompatible data. I have not shied away from this, for though 1
believe the book provides a documented review of certain areas of the
literature, it is basically a work which is organized according to my own
views of this subject. Many have of course changed since the first
edition was written in 1967.

A major aim in this edition has been to develop the outlines of a
quantitative treatment of some of the key classes of macromolecules in
early embryos and oocytes. Thus I have devoted considerable space to
estimates of RNA and protein synthesis rates, complexities, and amounts.
Such information must underlie a molecular level resolution of the basic
process with which development begins.

My hope is that this book will be useful to the friends, colleagues, and
advanced students with whom I have spent so much time arguing the
various subjects considered, and to others like them.

It is important and pleasurable for me to acknowledge the essential
contributions of several of my colleagues and associates. The manuscript

XV




Xvi Preface

in its various drafts was reviewed critically and perceptively by Dr. Bar-
bara R. Hough-Evans, Dr. William H. Klein, and Dr. Glenn A. Galau of
our research group at Caltech, and 1 am particularly grateful for their
detailed assistance. My partner, Dr. Roy J. Britten, encouraged me to
carry out this project and suggested many important improvements. Pro-
fessor Fotis Kafatos of Harvard University and Professor L. Dennis Smith
of Purdue University each reviewed a major portion of the book, and
Professor Gary Freeman of the University of Texas reviewed Chapter 7. 1
owe to these excellent scientists a large number of essential corrections,
additions, and suggestions. I wish to extend my gratitude and thanks to
these people and to the members of my research group who frequently
assisted me in this project, and from whom my time and attention were
often diverted. I would also like to thank Ms. Brooke Moyer who assisted
with the cover design. This book is dedicated to Jane Rigg who trans-
formed my imperfect drafts into a book and who so often remembered
what I forgot.

Eric H. DavipsoN
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Introduction: The Variable
Gene Activity Theory of
Cell Difterentiation

The basic arguments leading to the proposal of transcription level
regulation in animal cells are reviewed, and their history is briefly
outlined. Nineteenth century cell biologists considered the possibility
that differentiation can be accounted for by qualitative division of the
genome during development. This view was rejected on the basis of
classical experiments suggesting that the potentialities of embryonic
cells are equivalent. A large amount of later evidence demonstrates
genomic equivalence in differentiated cells within the same organism.
The main forms of evidence include cases in which given cells or cell
lineages are shown to carry out diverse functions successively (“trans-
differentiation”), the observation that differentiated cells usually con-
tain equal quantities of DNA and the same complements of DNA
sequence, and proof that differentiated cell nuclei may contain all the
genetic information necessary to program the development of a whole
organism. Nor in general do differentiated cells which intensively ex-
press given genes contain extra copies of these genes. Current exper-
iments show that only minor fractions of the genome are represented
in the RNA of differentiated cells and that when various differentiated
cells are compared, the transcribed regions constitute distinct, though
overlapping, sets of DNA sequences. In addition, transcriptionally
inactive DNA exists in all differentiated cells. Direct evidence for
variable gene activity, i.e., transcriptional control, comes from mea-
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surements of specific messenger RNA accumulation. These show in
general that when given messenger RNA’s are present in the cyto-
plasmic polysomes, the structural genes from which they are derived
are transcribed, while at other times or in other cell types, these genes
are transcribed less often. The initial level of control is at the tran-
scriptional, rather than post-transcriptional level. Thus, at least in
some examples so far studied, structural gene sequences can be tran-
scribed in chromatin only from cells in which the gene is being
expressed, and sequences not represented in polysomal RNA are also
undetectable in nuclear RNA. However, many levels of control are
possible, and probably all are utilized to some extent. The molecular
basis of transcription level regulation in animal cells is not under-
stood, but its mechanism seems likely to depend on the way(s) in
which DNA sequences are organized in the genome. Recent discov-
eries, showing that there exists an ordered pattern of interspersion
of repetitive and nonrepetitive sequence in animal DNA, are briefly
reviewed. At least some of the interspersed repetitive sequences
probably play a role in structural gene function. The evidence for
this is that structural genes are located in the immediate vicinity of
interspersed repetitive sequences and that special subsets of repetitive
sequences are contiguous to those structural genes expressed in a
given state of differentiation. The view taken in this book is that
transcription level regulation is the fundamental process underlying
differentiation and development.

Two premises are required in arriving at the proposition that differentia-
tion is a function of variable gene activity. The first of these is the well-
understood relationship between the nucleotide sequence of the DNA in
the genome and the amino acid sequence of the various proteins found in
the cell. Since the structural and functional characteristics of the cell
depend on its proteins, the cell requires the expression of genetic informa-
tion specifying its proteins in order for these characteristics to materialize.
Therefore, the differentiated state ultimately depends on the transcription
of genomic information.

Early Evidence for the Informational Equivalence of
Differentiated Cell Genomes

A second premise of the argument for the variable gene activity theory is
that every living cell nucleus in a metazoan organism contains the same
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complete genome as was present in the zygote nucleus. The opposite view
was proposed by Roux in 1883. Roux’s idea was that differentiation of cell
function results from the partition of qualitatively diverse genetic deter-
minants into different cell nuclei. Thus, each cell would contain in its
nucleus only those genes needed for the programming of its particular set
of functional activities, so that developmental specialization would stem
from the establishment of a mosaic of diverse partial genomes. Experi-
ments designed specifically to test this point were carried out by Driesch
(1892) and later by various other experimental embryologists (Morgan,
1927). In Driesch’s experiments the normal pattern of distribution of
cleavage stage nuclei into the diverse sectors of egg cytoplasm was tran-
siently altered by forcing cleavage to occur under the pressure of a flat
glass plate. When the plate was removed it was found that given nuclei
had been partitioned into cells other than those normally inheriting them,
but that normal development could still occur. Since nuclei normally
assigned to endoderm cells could also direct the development of meso-
derm, and vice versa, it was argued that these nuclei must contain the
genes for mesoderm as well as those for endoderm properties. It follows
that any cleavage-stage nucleus contains all the zygote genes.

The contemporaries of Driesch and his followers believed that the
pressure plate experiments showed the theory of qualitative nuclear divi-
sion to be incorrect (see, e.g., Wilson, 1925). However, it can be argued
that these experiments demonstrate the genomic equality of nuclei only at
a period of development which long precedes either the onset of cell
differentiation or the onset of direct control over morphogenesis by the
embryo nuclei. On the other hand, a variety of other observations suggest
that even highly differentiated cells contain a complete genome equal to
that contained in the zygote nucleus. It was recognized very early that the
cells of an organism are normally equal in the number of distinct chromo-
somes which they possess. A significant early clue came from the study of
dipteran polytene chromosomes, where chromosomal abnormalities as-
sociated with mutations affecting the structural characteristics of one tis-
sue can be observed in the chromosomes of another tissue. An example
was furnished by the Bar gene in Drosophila, which effects the mor-
phogenesis of the eye. Bridges (1936) showed that a duplication in band
16A of the X chromosome is visible in the polytene chromosomes of
salivary gland cells in flies bearing this mutation. Yet the salivary gland
cells are evidently not responsible for the details of eye morphogenesis.
Another early example was the Notch mutation in Drosophila, which in
heterozygotes causes peripheral incisions and other morphological ab-
normalities in the wings. This phenotype was associated with a hetero-
zygous deficiency in salivary chromosome band 3C7 (Demerec et al.,
1942). The nuclei of one differentiated cell type (the salivary gland) thus
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seem to bear genetic information required for the differentiated function
of other kinds of cells, such as wing and eye forming cells.

Transdifferentiation

An interesting test of the idea that differentiated cells carry information
normally expressed only in other cell types can be found in altered cell
fate experiments, in which obviously differentiated cells are shown to
change their specialized roles and to assume a new state of differentiation.
This phenomenon is termed “transdifferentiation.” For example, it was
shown by Stone (1950) that in the regenerating newt eye neural retinal
cells derive directly from cells which were formerly pigment cells.
Changes in state of cellular differentiation also occur in the regeneration
of the eye lens (reviewed by Yamada, 1967) and in other cases of regenera-
tion, such as limb regeneration (for instance, see Namenwirth, 1974; re-
viewed by Hay, 1968). It has long been known that extensive changes in
cell state also take place during regeneration in simple metazoa such as
Hydra (e.g., Burnett et al., 1973; Lowell and Burnett, 1973).

A great number of examples of transdifferentiation probably occur in
the normal embryological development of higher animals, where cells
performing a given specialized function at one stage later perform other
functions. In developmental cases, however, it is often difficult to prove
that the same cells or their lineal descendants are responsible for the new
state of differentiation rather than clones descended from previously un-
differentiated cell types. Several developmental examples have now been
well described. A clear case is the transdifferentiation of larval silk gland
cells in the moth. Selman and Kafatos (1974) have shown that in this
animal the cuticular cells of the silk gland later redifferentiate into cells
specialized for the secretion of comparatively huge volumes of KHCO,
solution, which is used as a solvent for the hatching enzyme cocoonase.
Another example from the same.silk moth concerns cells of the labial
gland. During the pupal stage these cells produce a thick cuticle, but as
metamorphosis proceeds they synthesize and secrete cocoonase zymogen
(Selman and Kafatos, 1975). A classic case of transdifferentiation claimed
to occur many years ago by Maximow (1927) was the transformation of
blood lymphocytes into phagocytic macrophages and then into collagen-
secreting fibroblasts. Petrakis et al. (1961) studied this transformation, and
showed that a culture of circulating mononuclear leukocytes sealed into a
diffusion chamber is indeed able to give rise to a sheet of collageneous
connective tissue fibroblasts after passing through an intermediate mac-
rophage stage. The identity of the collagenous fibroblasts with their mac-
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rophage precursors was certified by their retention of India ink particles
originally incorporated by the macrophages.

The occurrence of transdifferentiation in normal development, in re-
generation, and in various other special experimental circumstances
shows that differentiated cells contain genomic information other than
that needed for their current specialized activities. However, it can be
argued that each such case involves only a small fraction of the total
genomic information possessed by the organism, since it concerns only a
few functional traits. Such traits could be regarded as “closely related,” de
facto, since they belong to the repertoire of functions which are demon-
strable in a single cell type. From a biochemical point of view this argu-
ment seems arbitrary, since the differences between a cell specialized for
pigment synthesis and a neuron, between a leukocyte and a collagen-
secreting fibroblast, or between a cuticle- and a salt-secreting cell would
seem no less than those between a liver and a kidney cell. Nonetheless, it
requires a considerable act of generalization to conclude that because
transdifferentiation can occur, a differentiated cell nucleus actually con-
tains the whole genome, and the case for this now rests to a large extent on
other evidence.

DNA Constancy and Nuclear Transplantation

A critical element of evidence is the presence of twice the haploid
amount of DNA in the nucleus of every differentiated cell (a few particular
exceptions aside), except for the gametes, which contain half the somatic
cell quantity. The constancy of DNA content among diploid cells was
discovered by Boivin et al. (1948) and Mirsky and Ris (1949), and provided
one of the major reasons for regarding DNA as the genetic material.
Equality of DNA content among differentiated cell nuclei means that
differentiation cannot in general be explained through the selective loss of
massive fractions of unused genes from the nucleus, but this does not
preclude the possibility that differentiation involves the inactivation of
DNA coding for properties not manifest in a given cell type by means of
chemical alterations in the genetic material. Furthermore, animal
genomes are so large that the DNA of a large number of structural genes
could be deleted without detectably affecting the total DNA content. It is
now clear, however, that developmental alterations in the genomic DNA
either do not occur or are reversible. This important conclusion rests to a
large extent on nuclear transplantation experiments in which nuclei from
differentiated cells are injected into mature eggs and are shown to possess
the capacity to direct the complete course of development.




