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Preface °

At the beginning of this book, and in the absence of guidance from IUPAC,
it is appropriate to clarify the term ‘chemical sensor”. A chemical sensor may
be defined as a simple-to-use, robust device that is capable of reliable
quantitative or qualitative recognition of atomic, molecular or ionic species.
It is hard to imagine a field of applied chemistry in which a significant impact
could not be made by such a device. Undoubtedly, it is this potential that
has fuelled the contemporary preoccupation with chemical sensors. An
unfortunate side-effect of this otherwise welcome interest is the use of the
term ‘chemical sensor’ to add the chemical equivalent of a ‘High-Tegh gloss’
to a rather ordinary device, publication, conference or research group. This
loose usage of terminology is responsible in part for the ambiguity that
surrounds many chemists’ concepts of the form and function of chemical
sensors. Further ambiguity arises from the extravagant claims that have been
made for some sensors, and the impression that has been given of much
‘verging-on-a-breakthrough’ reseéarch. The research chemist engaged in sensor
development should be mindful of the fact that the uitimate target for these
devices is the real world, and that a successful laboratory device operating
under well-defined conditions and careful calibration does not constitute a
chemical sensor, \

Research into chemical sensors is not a recent phenomenon; it has been
under way for over 80 years. Indeed, two of the most successful devices, the
glass pH electrode, and the non-dispersive infrared system, have been in
routine use since the 1930s. Current research activity in sensors is more clearly
identifiable, mainly because it is organized into coherent programmes, but
the essential structure of a chemical sensor and the problems to be solved
in developing one remain the same. A chemical sensor consists of two parts,
a zone of selective chemistry, and a more or less non-specific transducer. The
selective chemistry provides an interface between the transducer and a specific
- chemical parameter (usually concentration) of the target analyte. The function
of this interface is twofold. Firstly, it must selectively interact with the target.
Secondly, it must transform the desired chemical parameter into a chemical
or physical signal to which the transducer responds. Clearly, the behaviour
of the chemistry in this interface zone is of crucial importance to the overall -
performance of the sensor. Accordingly, the two major problems to be solved
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in sensor research concern the development of the interface chemistry, and
the localization of this chemistry in or on an appropriate transducer.

The layout of this book reflects the nature of the problems mentioned in the
previous paragraph. Species recognition lies at the heart of chemical sensing,
and fundamental approaches to this process are discussed in the first two
sections. Molecular and ionic recognition is a primary biological process, and
not surprisingly there is a range of chemistries that can be exploited for
sensing: Part 1 deals with these. Part 2 consists of a reviéw of the efforts of
synthetic organic chemists to produce structures which react in a highly
specific way with target species. The material of Part 3 takes up the themes
of the previous chapters, but with a more practical emphasis. The chapters
in this section are written by authors experienced in the application of specific
chemistry. Each chapter reflects the contributor’s knowledge of the realities
of implementing their specialist chemistry, often coupled with their vision for
its future development. The final two parts of the book deal with transducers:
an arbitrary division has been made between electrochemical and other
transducers. Although some of the chapters in these sections contain
appropriate reviews of current applications of the subject transducer in
chemical sensing, this is by no means the primary aim of the contribution.
In each case the authors have attempted to give fundamental information
relating to the modus operandi of the transducer; information that is intended
to help the newcomer in assessing the applicability of a transducer to a
particular sensing problem.

This book is intended to be a handbook, giving practical information to its
readers, as well as supplying ideas for future use. A broad range of chemistries
are drawn together in this volume, the chapters of which are written by authors

" from industrial, academic, clinical and government laboratories. It is not an

up-to-the-minute review of every piece of chemical sensor research; that is a
job best left to the specialist journals. Well-trodden paths have been
deliberately avoided, as has the tendency to dwell on ‘Friday afternoon
laboratory curiosities’ that work at the end of the week but fail on Monday.
Finally, this book is a team effort, and I am grateful to all the contributors
for their work, and to the publishers for their forbearance during the long
gestation period. From a personal standpoint I am happy to acknowiedge
the help and guidance I have had from Professor T.S. West under whose
supervision I embarked upon chemical sensor research in 1973. In the early
stages of this book discussions with Dr J.F. Alder helped to sharpen my ideas
on the objectives. His clarity of thought and his candour were most welcome.
My family have supported me admirably during this time, and since in many
respects the greatest beneficiaries of sensor research should be people like
them who will experience improved health care and a cleaner and safer
environment, I dedicate this book to Diana, Thomas and Matthew.
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1 MOLECULAR AND IONIC RECOGNITION
~ BY BIOLOGICAL SYSTEMS

1 Molecular and ionic recognition
by biolegical systems

LJ. KRICKA

1.1 Introduction

Recognition of a molecule by another molecule or group of molecules is a
fundamental process of vital importance in all biological systems. Nature has
evolved a vast array of biomolecules and biomolecular structures which
exhibit an exquisite specificity in their molecular recognition properties.

Molecular recognition underlies many essential biological processes. For
example, resistance to disease relies on the presence of antibody molecules
which recognize and combine with specific molecules on the surface of an
invading organism. Tissue is recognized by the immune system as compatible
or incompatible (foreign) via tissue proteins coded by the genes of the Major
Histocompatibility System. Olfaction and taste depend on the interaction of
molecules with specific chemoreceptors and the subsequent neural coding of
“this information (1). Such biological systems provide the analyst with a rich
source of molecules with specific binding properties, and some examples are
listed in Table 1.1. By far the most important and versatile source are the
immunoglobulins produced by the immune system, because it is possible to
induce the production of specific immunoglobulins which will bind to a
particular substance by immunizing animals with that substance. Many
hundreds of different immunoglobulin molecules with diverse binding speci-
ficities have been produced in this way, and the technique has been refined
through the development of monoclonal -antibody technology (see
section 1.3.1).

An effective sensor requires a molecular recognition component which is

Table 1.1 Range of molecules with molecular recognition properties and their

specificities

Binder Substance(s) bound

Immunoglobulins Wide range of small and large molecules
Enzymes - Wide range of molecules

Lectins . Oligosaccharides

Receptors Hormones

Avidin Biotin

DNA DNA, RNA

Protein A 18G, IgM, IgA

9050007



4 . CHEMICAL SENSORS

- capable of recognizing and binding one particular molecule amongst a
mixture of molecules. The objective of this chapter is to survey the range of
binding specificities of biomolecules and biomolecular structures (receptors)
which may be useful as the molecular recognition component of a chemical
Sensor.

N

1.2 Characteristics of molecular recognition systems

1.2.1 Specificity

Ideally a molecular recognition system should exhibit specificity, i.e. it should
only bind one particular molecule and not bind other types of molecules to
any appreciable extent. This ideal is rarely achieved, and, in general, molecular
recognition systems will bind a range of molecules; albeit to differing extentg,

"~ For example, the enzyme glucose oxidase (EC 1.1.3.4) has specificity for
beta-n-glucose which it binds and transforms to gluconolactone. However
. the enzyme will also bind other related substances such as 2-deoxy-D-glucose,
.6-deoxy-6-fluoro-D-glucose, 6-methyl-D-glucose, and 4, 6-dimethyl glucose
2). Charactenzaﬁon of the specifttity of a particular binding system is an
1mportant prerequisite before it is used analytically. For the binding of
antigens to immunoglobulins the degree of non-specificity in binding is
measured éy'the ‘cross-reactivity’ of the immunoglobulin. Cross-reactivity
is determined from results of competitive immunoassay standard curves
obtained by incubating a limited amount of immunoglobulin and a fixed
amount of labelled antigen with increasing amounts of the antigen or
increasing amounts of the possible cross-reacting substance (3). Cross-reaction
is then defined as the ratio of the weight of cross-reactant which reduces the

- binding of labelled antigen to 50"/., of the value in the absence of antigen
(expressed as a percentage).

1.2.2 Binding constants

Interaction between a molecule (M) .and a substance (B) with .binding
properties for that molecule can be described by the equation:

: ki |
M+B=M:B
k2

(ky, rate of association; k,, rate of dissociation). The affinity of the binder
» for the molecule is described by a binding constant (K) where:

K =[M:B)/[M][B] =k,/k,

. For multivalent mteractlons (e.g.of antibodies with antigens) the term avzd;ty '
™ has been introduced in order to emphasize the stabilization of complexes by

-
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MOLECULAR AND IONIC RECOGNITION BY BIOLOGICAL SYSTEMS 5

the multiple binding interactions. Binding constants vary widely, from
10°L M ™! for lectins, up to 10'*L M ™! for the avidin-biotin system:

1.2.3 Chemical basis of binding

Hydrophilic, hydrophobic and hydrogen bond interactions are all involved
to varying extents in biomolecular binding reactions. The majority of work
in this area has centred on the interaction of enzymes with their substrates
and the binding of protein antigens to antibodies. Catalytically important
amino acid residues in the active site have been determined for several
enzymes (e.g. thermolysin) and enzyme—substrate binding interactions have
been studied using molecular modelling systems (4, 5). X-ray analysis of
several enzymes has revealed the presence of a cleft, crevice or depression in
the globular protein structure. This is the site of the active centre of the
enzyme which binds the substrate and mediates the metabolic transformation.
Figure 1.1 illustrates structural data for the zinc metallo-enzyme carboxy-
peptidase A and shows the location of the key residuals Tyr 248, Gl 270,
and Arg 145 in the active site. :

The identification of wtuqh ‘part of the surface of a protein (antlgemc site,
. antigenic determinant or. epltope) is in contact with the binding site of an
antibody has received considerable attention. The antigenic site'may be a
continuous segment of polypeptide chain or may consist of two or more
segments brought together in the tertiary structure of the protein. This latter
type of antigenic site has been variously named as a neotope, topographical,
conformation-dependent, or discontinuous determinant (6). Antigenic sites
usually contain charged and polar amino acid residues (7, 8) although
hydrophobic interactions also play a role in the binding reaction. Anti-
genically reactive regions of a proteln are usually small, typically 6-7 amino
acid residues. Binding to antibody is primarily via ionic reactions involving
charged amino acids, with ‘non-polar amino acids providing a stabilizing
effect via hydrophobic interactions (7). Hydrophilic segments appear to be
important in a wide range of protein macromolecule interactions (8); for
example, complement binds to the most hydrophilic region of the Fc portion
of an immunoglobulin (9), and DNA polymerase II binds to nuclefc acids
via its most hydrophilic segment (10). .

1.3 Selected molecuhr and ionic recogmtlon systems’

1.3.1 Antzbodles

The immune system is a highly developed and efficient molecular recognition
system which has been extensively exploited for the production of antibodies
with specific binding properties. In vivo a foreign molecule (an immunogen)
induces B lymphocytes to proliferate and differentiate into plasma cells which
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