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Preface

. epistemology n. The study of the nature and origin of knowledge.

When I was in my early teens I felt adults were lying to me much of the time.
They made dogmatic statements they couldn’t defend. ‘“God will punish you
if you take His name in vain,” they said. A sentence must never end with a
preposition.! ” At the time what confidence I had was derived mostly from my
ability to reason, so I reacted inteflectually. I became obsessed with discover-
ing what, if anything, is true, and in what sense.

About this time two things happened. I studied plane geometry, which 1
found fascinating, and I noticed that the phrase “‘mathematically proven” was
a folk-wisdom synonym for “absolutely certain.” I concluded that if absolute
truth is to be found anywhere it must lie in mathematics.

In college I studied mathematics and philosophy. I learned to formulate my
epistemological knot more precisely: to what extent is mathematics the truth?
But I made little progress untangling it.

After college, what with graduate school, adjusting to work, and learning to
like myself and trust my emotions, the knot was pushed to the back of my
mind.

I became a college mathematics teacher. In the spring of 1971 my chairman
asked me to develop a course for the fall term in non-Euclidean geometry. |
had heard of non-Euclidean geometry but had never studied it. That summer
I did study it, along with the 2100-year-old controversy that had culminated
in its invention, and suddenly I was able to untangle my long-neglected
epistemological knot in a most satisfactory manner. I felt that at last I
understood the extent to which mathematics is true, more importantly the
extent to which it is not, and by inference the extent to which any general
statement in science or philosophy can claim to be true. It was a heady
experience; I felt asif [ had been transported to a vantage from which I could
see—actually see—the limits of reason.

What I learned that summer was that a struggle with the notion of mathe-
matics as truth similar to my own had unfolded in mathematical and philoso-
phical circles from about 400 B.C. into the 19th century; that it had climaxed
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viii Preface

in the first half of the 19th century with the invention of non-Euclidean
geometry; and that as a result over the second half of that century mathe-
maticians and scientists changed the way they viewed their subjects. An entire
scientific revolution had taken place that I had never heard of!

Moreover, prescinding from my special interest in the matter, I felt that this
intellectual adventure I had stumbled upon made a terrific story. Thus this
book; for, being a teacher, whenever [ hear a good story I immediately want
to retell it, in my own way, to someone else.

I presuppose that you studied plane geometry in high school. However I do
not expect that you have done so recently, or that you did particularly well in
the course, or that you remember much about it. And while I occasionally
draw upon high school algebra to illustrate a point, if you’ve never studied
that subject you won’t be at any real disadvantage.

The book proceeds on three levels. On one it’s just a geometry book with
extra material on history and philosophy. For a while we will talk about
Euclidean geometry—the “plane geometry” of high school-—then switch to
“hyperbolic geometry,” another plane geometry invented around 1820. We
will compare the two and reflect on what we have done.

On another level this book is about a scientific revolution, every bit as
significant as the Copernican revolution in astronomy, the Darwinian revo-
lution in biology, or the Newtonian or 20th-century revolutions in physics,
but which is largely unsung because its effects have been more subtle—a
revolution brought about by the invention of an alternative to traditional
Euclidean geometry. Hyperbolic geometry is as logically consistent as
Euclid’s, has as much claim to being “true” as Euclid's, and yet extensively
contradicts Euclid’s. In Euclidean geometry the angles of a triangle add up to
180°; in hyperbolic geometry they add up to less, and the sum varies from
triangle to triangle. In Euclidean geometry the Theorem of Pythagoras? holds;
in hyperbolic geometry it does not. The effect of this paradoxical situation on
19th-century mathematicians and scientists was profound. Mathematicians
embarked on an agonizing reappraisal of their subject that would last for
decades; and scientists found themselves asking whether science wasn’t in fact
a very different thing than they had always thought.

On the third and most speculative level this book is about the possibility of
significant, absolutely certain knowledge about the world. It offers striking
evidence—though of course it cannot prove—that such knowledge is
impossible.

I said that I assume you have studied Euclidean geometry. If in addition—
and I think this is likely—you have nor studied non-Euclidean geometry, and
your epistemology of mathematics is as nebulous as mine used to be, then the
story I retell in this book will provide you a rare opportunity to actually
experience the intellectual and intuitive disorientation scientific revolutions
cause. In fact the opportunity may be unique. If you are an average educated
person it would probably be difficult for you, reading an account of one of the
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other scientific revolutions I mentioned, to feel the confusion (and excitement!)
that originally surrounded the event, because you already believe the once-
revolutionary theory to be substantially correct. You have been brought up to
believe the earth moves around the sun and is held to its path by gravity (so
much for Copernicus and Newton); you may have doubts about the specific
mechanism Darwin proposed to explain evolution, but you probably con-
sider it a fact that evolution has occurred, which is what the fuss was really
about; and while you may not know much about 20th-century physics, the
spectacle of a nuclear explosion is terrifying proof that there is something to it.
With regard to geometry, however, you are almost certainly a committed
Euclidean, and consider the possibility of a logical, “truthful” geometry
contradicting Euclid’s to be absurd. You are like a 16th-century astronomer
hearing of Copernicanism for the first time.

The coming of non-Euclidean geometry was basically a mathematical
event, so learning about it involves reading mathematics. Mathematics is
more demanding than light fiction, so take your time. Don’t try to push on
when you're tired. In parts of this book you may not want to read more than
two or three pages at a sitting.

On the other hand, this book is supposed to be fun. Feel free to skip parts
too technical for your taste. You will be able to pick up the thread again, after
the technicalities subside. Feel free. especially, to skip proofs (in Chapters 2,
4, and 6). They are the bookkeeping, included to show that matters stand as
I say they do, but skippable if you’d as soon take my word for it.

I have included some exercises, in case you'd like to try your hand. If not,
they too can be skipped without loss of continuity.

Richard J. Trudeau

Notes

! preposition. The record for largest number of consecutive terminal prepositions
(five) seems to be held by the child’s question at the end of the following anecdote,
whose author | have unfortunately been unable to trace.

A child is in bed with a cold. “Mommy, can you come up and read me a story?” he
calls down to his mother. As she reaches the top of the stairs, he recognizes the book
in her hand as one he doesn’t care for. He asks, “What did you bring the book that I
don’t like to be read to out of up for?”

% Theorem of Pythagoras. In every right triangle, ¢> = a? + b* where ¢ denotes the
length of the longest side and a and b the lengths of the other two.



Introduction

Felix Klein described non-Euclidean geometry as “‘one of the few parts of
mathematics which is talked about in wide circles; s0 that any teacher may be
asked about it at any moment.” This old observation 1s'now reinforced by
our khowledge that astronomical space is only approximately Euclidean.
Trudeau’s book provides the reader “vith a non-technical description of the
progress of thought from™ Plato and Euclid to Kant, Lobachevsky, and
Hilbert. There is a pleasantly discursive treatment of Pontius Pilate’s un-
answered question ‘““What is truth?”” The text is enlivened by abundant quota-
tions and amusing cartoons. The final chapter includes a clear account of
experiments which seem to indicate that the world as seen by our two eyes is
not even approximately Euclidean but hyperbolic!

H. S. M. Coxeter
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CHAPTER |

First Things

- The Origin of Deductive Geometry

Once upon a time—around 600 B.C.-—there was a man named Thales, who
invented what we call *‘science.”

Before Thales, thinkers did not think abstractly. [nstead of looking for
principles behind the curious events with which nature confronted them, they
looked for personalities. Their findings-—myths—were stories populated
with an assortment of gods and goddesses whose interactions with one an-
other and with human beings produced natural phenomena like spring,
thunder, eclipses, etc. A

Nowadays it is common to sneer at ancient myths, but they were created by
men and women of genius. The myths provided a comprehensive explanation
of natural phenomena and a link between humanity and nature that made the
universe less frightening. In fact science has only one advantage over myth, by
also predicting natural phenomena to a degree myth never could.

(By the way, this story I'm telling about pre-Euclidean geometry is itself a
sort of myth. It credits a few legendary characters with subtle intellectual
developments that must actually have involved numerous people over con-
siderable time. The story has evolved, in the virtual absence of hard data, from
a few legends, mathematicians’ longing to know the origin of their subject,
and their sense, as mathematicians, of what the milestones probably were.)

Thales (c.625-c.547) believed nature operated not by whimsy, or by the
gods’ romantic entanglements, but by principles intelligible to human beings.
Thales introduced abstraction into the contemplation of nature.

In particular, Thales introduced abstraction into geometry. Before Thales,
“geometry” had meant “‘surveying” (the Greek geometrein means “to mea-
sure land”’), and geometric figures had been particular objects like corrals and
fields. Instead Thales conceived of geometric figures as abstract shapes. This
enabled him, when he examined in this light the hodgepodge of geometric
recipes, rules-of-thumb, and empirical formulae that had been transmitted
from Babylonia and Egypt,' to detect an order. He noticed that some geo-
metric facts were deducible from others. And he made.the extraordinary
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suggestion that geometry should become, as much as possible, a purely mental
activity.

Greek Civilization in 550 B.C.

Thales was Greek, of course, and lived in a city that was then at the center
of Greek culture: Miletos, on the western coast of Asia Minor (currently
Turkey). Just a few miles from Miletos there is an island called Samos, where
Pythagoras was born when Thales was in his fifties.

When Pythagoras (c.570-c.495) grew up he learned of Thales’ scientific
ideas. He was particularly captivated by Thales’ proposal for geometry.

Pythagoras left Asia Minor, and for a while studied in Egypt. Eventually he
settled in Kroton, a Greek city in southern Italy, at the ball of the foot. There
he founded the ““Society of Pythagoreans,”” a community of men and women
sharing quasi-religious rituals, dietary laws, and devotion to mathematics as
the key to understanding nature. Though the actual community lasted only a
few decades, its doctrines continued to influence Greek thought for much
longer. Centuries later various thinkers around the Mediterranean were still
calling themselves “Pythagoreans” and professing the Pythagorean belief in
the primacy of mathematics among the sciences. To an extent the Society has
affectod Western thought down to the present, for Plato (c.427-347) was
strongly influenged hy Pythagorean ideas. (“‘All philosophy is a series of
footnotes to Plato”-A. N. Whitchead.)

The Pythagopeags 2ccepted Thales’ program of making geometry a deduc-
tive science. TO thygead their greatest contribution was a dramatic discovery
that helped set flier'standard of proof. Thales had deduced his theorems by a
- ¢ombination of ‘Iggic-and intuitive reflection. The Pythagoreans discovered
that Jogic and iatyition can disagree! ’

: Here’s what happened. Let 48 and CD be two straight line segments (see
Figure 1). We will say that a straight line segment XY is a *‘common measure™
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A B
C D
X—Y
Figure 1
E ! F
1 1
H G
1
Figure 2

of ABand CD if there are whole numbers m and n so that XY laid end-over-end
m times is the same length as 4B and XY laid end-over-end n times is the same
length as CD. For example if 4B were a yard longand CD 10 inches, a segment
XY of 2 inches would be a common measure with m = 18 and n = 5; for laying
XY end-over-end eighteen times would produce a length of 36 inches, the same
as AB, and laying XY end-over-end five times weuld produce a length of 10
inches, the same as CD. It was intuitively evident to the early Pythagoreans
(and as I write it is intuitively plausible to me) that a common measure can be
found for any pair of segments—though of course it may be necessary to take
XY quite small in order to measure both 4B and CD exactly. Since AB/CD =

(m-XY)/(n-XY) = m/n, a “rational” number (that is, a ratio of whole num-
" bers), what their intuition predicted was that the quotient of two lengths
would always come out rational.

Now take a square with side equal to 1 and draw a diagonal (see Figure 2).
Applying the Theorem of Pythagoras (p. viii) to the right triangle FGH we get
FH? = FG* + GH?* =12+ 12=2,s0 FH = \/2_ and therefore the quotient
FH|FG of the two lengths FH and FG is equal to ﬂ/ 1= ﬁ also. If the early
Pythagoreans had been correct that the quotient of two lengths is always
rational, \/5 would then be rational. But one of the later Pythagoreans
(probably Hippasos of Metapontion,? after 430 B.C.) discovered, by an argu-
rient not based (primarily) on intuition, that \/5 is not rational.

The#bof went something like this. Any rational number can be “reduced
to lowest terms,” that is, expressed by whole numbers having no whole
number factor (other than 1) in common; for example 360/75 = 24/5 and 24
and S have on common factor. Therefore if ,/2 were rational it would be
possible to express it as \/5 = p/q where p and ¢ are whole numbers with no
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common factor. Squaring both sides gives 2 = p?/¢*, and multiplying both
sides by g2 gives 2¢2 = p*. This means p? is even, because it is twice another
whole number. The Pythagoreans has previously proven that only even
numbers have even squares,* so they knew that, since p? is even, p must be
even also. This has two consequences: '

(1) p is twice some other whole number (this is what being ‘‘even’’ means)
which we can call *7,” so p = 2r; and

(2) g 1s odd, for we said p and g have no common factor, and an even g would
have a factor 2 in common with p.

We will pursue (1). Substituting 2r for p in the equation 2¢% = p? (above), we
get 2g% = (2r)? or 2¢* = 4r%. Dividing both sides by 2 gives g* = 2r? so ¢?,
being twice a whole number, is even. As before this implies that g is even (only
even numbers have even squares). But we just said in (2) that ¢ is odd! As the
hypothesis that \/i is rational has led to this contradiction, logic forces us to
conclude that \/2 is not rational.*

At this point the Pythagoreans were perplexed. They were sure, on intuitive
grounds, that \/i, being the quotient of two lengths, is a rational number. On
the other hand they were equally sure, on grounds of logic and computation,
that \/2 is not a rational number!

Had the mathematical world decided to accept intuition as more reliable
than logic the future of mathematics would have been quite different; but it
did decide in favor of logic,® and mathematicians ever since have been trained
to revere logic and mistrust intuition. (I think this has something to do with
the generalization that mathgmaticians are *‘cold” people.)

To say mathematicians consider intuition unreliable, however, is not to say
they have banished it from mathematics. On the contrary, the basic assump-
tions from which any branch of mathematics proceeds—the ‘‘axioms’—are
accepted, without proof, primarily because of intuitive appeal. And intuition
plays a big role in the discovery of theorems as well, or mathematicians would
be spending most of their time trying to prove false statements. It’s just that
intuitive evidence is not accepted as conclusive.

The Pythagorean heritage is what modern mathematicians call “rigor,” a
habit of mind characteristic of mathematics. Every effort is made to insulate
the subject from its down-to-earth origins. Terms are defined and principles
formulated with constant vigilance against unstated assumptions. Theorems
are derived by logic alone.

In the Sth century B.C., before mathematics was made rigorous, mathe-
maticians had already constructed long chains of geometric theorems in which
each theorem was deduced, informally, from those before it. Each chain
started with generalizations from experience which of course were not proven.

As the scope of these chains grew there emerged the daring idea that it might -
be possible to link them together into a single network, anchored to a smali
number of generalizations from experience, which would contain a broad
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inventory of elementary geometric knowledge. And toward the end of the
century—in fact, about the same time it was proven that /2 is not rational—a
mathematician named Hippokrates of Chios® accomplished exactly this, in a
book he called the Elements.
~ Later, while the rigorization of mathematics was underway, other com-
prehensive geometric networks’ were forged. Each was called the Elements,
and presumably each, by having simpler axioms, tighter logic, or more
theorems, was an improvement on its predecessors. The series culminated in
the famous Elements of Euclid, completed about 300 B.C.

Euclid’s Elements is a single deductive network of 465 theorems that in-
cludes not only an enormous amount of elementary geometry, but generous
helpings of algebra and number theory as well. Its organization and level of
logical rigor were such that it soon became geometry’s standard text. In fact
it so completely superseded previous efforts that they all disappeared.

The Elements—from now on the title will refer to Euclid’s book only—is
the most successful textbook ever written. It has gone through more than a
thousand editions and was used well into the last century (here and there, it is
used even today). More importantly, it is the paradigm that scientists have
been emulating ever since its appearance. It is the archetypal scientific treatise.
To study the form and limitations of the Elements, therefore, is to poke
through the entrails of the whole scientific enterprise.

Given the stature of this work, surprisingly little is known about its author.
Scholars even hesitate to conjecture Euclid’s dates, except to say that he
“flourished™ about 300 B.C. Just then the center of scientific and mathe-
matical activity was shifting from Athens to Alexander the Great’s new city
Alexandria at the mouth of the Nile. Euclid lived in Alexandria, where he was
a professor of mathematics at the Museum (the university). Beyond this all
that is known about Euclid is contained in two anecdotes. In one a beginning
student of geometry asks him, ‘“What shall I get by learning these things?”
Euclid responds by calling a servant and-saying, “Give him a coin, since he
must make gain out of what he learns.” In the other the king, Ptolemy I, asks
him, “Is there in geometry any shorter way than the Elements?”—to which
Euclid replies, “There is no royal road to geometry.”

Material Axiomatic Systems

The Elements is the oldest example we possess of what is now called a
“material axiomatic system.” Before we examine the Elements itself, with all
the explaining and restructuring of Euclid’s text our study will involve, I think
it would be wise to discuss material axiomatic systems in general (in this and
the next two sections) and to illustrate Euclid’s proof techniques in a non-
geometric context (in the following section). -
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Figure 3. Courtesy of P. S. de Beaumont.

Pattern for a Material Axiomatic System®

(1) The basic technical terms of the discourse are introduced and their mean-
ings explained. These basic terms are called primitive terms.

(2) A list of primary statements about the primitive terms is given. In order
for the system to be significant to the reader, he or she must find these
statements acceptable as true based on the explanations given in (1). Thcsc
primary statements are called axioms.

(3) All other technical terms are defined by means “of prevnously introduced
terms. Technical terms which are not primitive terms are accordingly called
defined terms.

(4) All other statements of the discourse are logically deduced from previ-
ously accepted or established statements. These derived statemenls are
called theorems.

Notice there are two kinds of -technical terms. The meanings of the
““defined” tefms (item (3)) are prescribed by reference to terms (of either type)
previously introduced; at least in relation to those earlier terms, therefore, the
defined terms are completely unambiguous. But unfortunately it is not pos-
sible to achieve unambiguity for a// terms: dictionaries are, after all, circular.
(See Figure 3, or try Jeff’s experiment yourself with a word like “alive” or
“straight” that cycles back quickly.) Thus it is necessary to accept some terms
into the system (usually from everyday speech) without benefit of precise
definition; these are the “primitive” terms of item (1). Of course every effort
is made to indicate the sense in which each primitive term is to be taken, but
no amount of explairing can guarantee that everyone will understand themin

. exactly the same way.

Similarly there are twa kmds of statements. Just as one cannot define evéry
term, one cannot deduce every statement. Accordingly, the statements of item
(2)-are accepted without deductive proof, on grounds that are outside the
official structure of the system. (Within the system they are viewed simply as
assumptions.) These statements provide a starting point from which all the
other statements (item (4)) are logically deduced.
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For many people a sticking place is that phrase, ‘‘logically deduced.” Before
we proceed to an example of a material axiomatic system, therefore, I think
we should spend some time talking about logic—at first in general, then as we
will encounter it in this book.

Logic

Every rational discussion involves the making of inferences. What kinds of
inferences are allowed depends on who the participants are and what subject
is being discussed. In this sense each type of discussion has its own special
logic. For example, the sort of evidence that physicists accept as strong
confirmation of a theory is rejected as totally inadequate by mathematician-
trying to prove a theorem; in turn, the esoteric reasoning mathematicians
sometimes employ is utterly worthless to literary critics analyzing a novel.
(Indeed, there are forms of argument employed regularly in mathematics that
are applicable to nothing else.'°)

Usually, however, the term “logic™ is used in a more general sense, to refer
to principles of reasoning that the various special logics are presumed to have
in common. The belief is that this common logic would be acceptable and
potentially useful to participants in any rational di>cussion. Of course there’s
no way of checking this without polling the entire planet, or at least scruti-
nizing its more than 3,000 languages, but since Greek concepts are so much a
part of the Western heritage it seems safe to say there is a widely shared logic
at least among people with Western-style educations.

Though this traditional logic does not include the special techniques of
modern mathematics, it does include all the forms of argument used by
mathematicians in Euclid’s time. In fact, today many people, hearing the term
“logic,” can think of little except the principles of reasoning used by Euclid,
because the only time they have ever heard logic discussed explicitly (rather
than taken for granted) was in a high school geometry course.

Throughout this book, even when we take up non-Euclidean geometry,
Euclid’s logic is all we will ever need. We have good reason, therefore, to feel
confident about the soundness of our logic. It is safely within traditional logic,
and has been embedded in the fabric of Western thought for more than 2,000
years. _ :

Nonetheless it is wise to take all logic with a grain of salt. It is vulnerable to
doubt, on at least two counts.

I'll let the author of Alice’s Adventures in Wonderland and Through the
Looking-Glass tell you about the first.

Achilles had overtaken the Tortoise, and had seated himself comfortably on its back.

*“So you’ve got to the end of our race-course?”” said the Tortoise. “Even though it
does consist of an infinite series of distances? I thought some wiseacre!! or other had
proved that the thing couldn’t be done?”

“It can be done,” said Achilles. ‘It has been done! Solvitur ambulando. Y ou see the
distances were constantly diminishing: and so—"

“But if they had constantly been increasing?” the Tortoise interrupted. “‘How then?”

“Then I shouldn't be here,” Achilles modestly replied; “and you would have got
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several times round the world, by this time!”

“You flatter me—flatren, I mean,” said the Tortoise; “‘for you are a heavy weight, and
no mistake! Well now, would you like to hear of a race-course, that most people fancy
they can get to the end of in two or three steps, while it really consists of an infinite
number of distances, each one longer that the previous one?""

“Very much indeed!” said the Grecian warrior, as he drew from his helmet (few
Grecian warrior possessed pockets in those days) an enormous note-book and a pencil.
“Proceed! And speak slowly, please! Shorthand isn’t invented yet!”

““That beautiful First Theorem of Euclid!” the Tortoise murmured dreamily. “You
admire Euclid?”

“Passionately! So far, at least, as one can admire a treatise that won’t be published
for some centuries.to come!”

“Well, now, let’s take a little bit of the argument in that First Thcorem—just two
steps, and the conclusion drawn from them. Kindly enter them in your note-book.
And, in order to refer to them conveniently, let’s call them A, B, and Z:

(A) Things that are equal to the same are equal to each other.
(B) The two sides of this triangle are things that are equal to the same.
(Z) The two sides of this triangle are 2qual to each other.

“Readers of Euclid will grant, I suppose, that Z follows logically from A and B, so
that anyone who accepts A and B as true, must accept Z as true?”

“Undoubtedly! The youngest child in a high school—as soon as high schools are
invented, which will not be until some two thousand years later—will grant thar.”

**And if some reader had nor yet accepted A and B as true, he might still accept the
sequence as a valid one, | suppose?”

“No doubt such a reader might exist. He might say ‘I accept as true the hypothetical
proposition that, if A and B be true, Z must be true; but I don't accept A and B as true.’
Such a reader would do wisely in abandoning Euclid, and taking to football.”

“And might there not also be some reader who would say ‘I accept A and B as true,
but I don’t accept the hypothetical'?”

*“Certainly there might be. He, also, had better take to football.”

*“And neither of these readers,” the Tortoise continued, *is as yet under any logical
necessity to accept Z as true?”

“Quite so,” Achilles assented.

“Well, now, I want you to consider me as a reader of the second kind, and to force
me, logically, to accept Z as true.” '

*“A tortoise playing football would be—"" Achilles was beginning.

“—an anomaly, of course,” the Tortoise hastily interrupted. “Don’t wander from
the point. Let’s have Z first, and football afterwards!”

“I'm to force you to accept Z, am 1?7 Achilles said musingly. **And your present
position is that you accept A and B, but you don’f accept the hypothetical—"

“Let’s call it C,” said the Tortoise.

*“—but you don’t accept:

(C) If A and B are true, Z must be true.”

*“That is my present position,” said the Tortoise.

“Then I must ask you to accept C.”

“I'll do so,” said the Tortoise, “‘as soon as you've entered it in that note-book of
yours. What else have you got in it?*

“Only a few memoranda,” said Achilles, nervously fluttering the leaves: “a few



