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Preface to
the English Edition

The English translation of the present book fully corresponds to the
Russian original version. The minor changes that have been made consist
ohly of some remarks on the text and the correction of misprints that have
been discovered. The duthor hopes that the English edition will help foreign
readers obtain first hand knowledge of the methods in computational
mathematics being developed in the Soviet Union and become aware of some
scientific trends resulting from the necessity of solving complicated problems
by reducing them to elementary ones.

The author expresses his gratitude to Professor I. Babuska who made
a number of remarks on the book that have been considered in its English
version. He would also like to acknowledge his deep gratitude to Dr. J.
RuZicka, the translator of the book, and to Professor A. V. Balakrishnan,
head of the System Science Department at UCLA, who called attention to
the need for an English language edition. The author appreciates very much
the cooperation of Springer-Verlag who, with the present book, started a
new series of monographs on mathematical systems and economics.



Preface

The present volume is an adaptation of a series of lectures on numerical
mathematics which the author has been giving to students of mathematics
at the Novosibirsk State University during the span of several years. In
dealing with problems of applied and numerical mathematics the author
sought to focus his attention on those complicated problems of mathematical
physics which, in the course of their solution, can be reduced to simpler and
theoretically better developed problems allowing effective algorithmic
realization on modern computers.

It is usually these kinds of problems that a young practicing scientist
runs into after finishing his university studies. Therefore this book is pri-
marily intended for the benefit of those encountering truly complicated
problems of mathematical physics for the first time, who may seek help
regardmg rational approaches to their solution.

In Writing this book the author has also tried to take into account the
needs of scientists and engineers who already have a solid background in
practical problems but who lack a systematic knowledge in areas of numerical
mathematics and its more general theoretical framework.

Consequently, the author has selected a form of exposition which in hlS
opinion helps to attract the attention of a wide range of researchers )
problems of numerical mathematics. This style has required certain con-
cessions in the exposition, thus allowing concentration only on basic ideas
and approaches. As for the details (sometimes important) and the possible
generalizations (such as minimal smoothness requirements, constraints on
the inpu* data, etc.), they are obvious to the specialist and present useful
exercises for a beginner.

Chapter 8 is an expanded version of the paper given by the author at the
International Congress of Mathematicians in Nice (1970). This chapter
gives some idea both of the material considered in the previous chapters, and
of various methods and problems of numerical mathematics that are of
fundamental importarice but have not found their way into this volume.

In the process of preparation for publication this book has undergone
considerable changes in response to advice and comments obtained by the
author from his colleagues and associates. Those whose help is gratefully
acknowledged include M. M. Lavrentiev, V. I. Lebedev, I. Marek, M. K.
Fage, and N. N. Yanenko. They have made a number of constructive
comments regarding the exposition of individual chapters, especially the
first and fifth. The changes in the second chapter, which are due to Yu. A.
Kuznetsov, are so profound that the nature of his contribution in this part is
essentially that of coauthorship. The author has also enjoyed valuable
advice and comments from V. T. Vasil'ev, V. P. II'in, A. N. Konovalov,



viii Preface

V. P. Kochergin, V. V. Penenko, V. V. Smelov, U. M. Sultangazin, and
others. G. S. Rivin did considerable work in editing the manuscript. To all
these, as well as M. S. Yudin who took part in preparing the book for
publication, the author expresses his deep gratitude.
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- Chapter 1

Fundamentals of the Theory of Difference Schemes

This chapter briefly surveys those fundamentals of the theory of difference .
schemes that are used extensively in the following chapters. We restrict our
theoretical considerations to the simplest and most easily interpreted cases,
since our main purpose is to achieve familiarity with certain modern con-
cepts in the construction of numerical algorithms in mathematical physics.
For more refined and more complex theoretical developments we refer the
reader to the specialized bibliography given at the end of the book.

1.1. Basic Equations and their Adjoints

Let us consider a region D in the n-dimensional Euclidean space E,. Ob-
serve at the very outset that the regions usually encountered in applied
mathematics are of such a structure that they will possess a measure: area in
the two-dimensional case, volume in three dimensions and so on. Neverthe-
less the theory of Lebesgue measure is vital in the subsequent definitions and,
thus, the reader is assumed to be familiar with measure theory and the Lebes-
gue integral. (Smirnov [2], Sobolev [1], Viadimirov [2], Natanson [1], and
others.)

Next let us define the Hilbert space L,(D) of all real measurable square
integrable functions:

J‘ f¥x)dx < oo,
D
with the inner product
f.9) = j F(x0) dx. (1)
D .

As usual, the norm of the function f € L,(D) is defined by

If12 = (£, f). (1.2)

Let us now choose a subspace (a linear manifold) ® of the Hilbert spacé
L,(D) by imposing certain addifional conditions which every element ¢ € ®
must satisfy. For example, we may require some specified smoothness con-
ditions, conditions on the limit behavior at the boundary D, etc. These con-
ditions, however, must be sufficient to guarantee that an operator 4, if given,
maps the subspace @ into L,(D).
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A linear operator A, defined on the linear manifold @, is called positive
semidefinite if
(Ag, )20 (1.3)

for all ¢ € ®, with the equality sign possibly holding for a nonzero element ¢.
It is customary to write 4 = 0 in this case. If the equality sign above can not
hold for nonzero elements, that is

(49, ¢)>0, ¢ #0, (1.4)

then we say that the operator 4 is positive and write 4 > 0. Finally in the case
of the stronger inequality

(49, 9) 2 1o, 4).  ¢€, (1.5)

where y > 0 is a positive constant independent of ¢, the operator A is called
positive definite.

Note that if A is a positive symmetric matrix, then it is positive definite
(Faddeev, Faddeeva [8]).

. The subspace ® will be called the domain of the operator A and denoted
by &(A).

Consider next the adjoint operator A* defined by the Lagrange identity

(Ag, h) = (g A*h), - (1.6)

where g € ®(4), he D(4*). .

The subspaces ®(4) and A(4*) of the Hilbert space L,(D) do not coincide
in general, despite the fact that their elements are defined on the same region
D in E,. In what follows we will assume that the adjoint operator exists.ang
is closed in the following sense:

Consider a sequence ¢} ~»  and let A*¢* — y. Then y € ®(A*) and the
limit relation A*y = y holds. The operator A4 is called selfadjoint if A = A*
and ®(A4) = D(4*).

Let us note one important consequence regarding the properties of
adjoint operators. Namely, if ®(4) = @(4*), then 4 > 0 implies 4* > 0.

A considerable role in analyzing algorithms is played by the Fourier
expansions with respect to the eigenfunctions of operators and their adjoints.

Consider the followmg two spectral problems for 4 = 0

Au= A,  A*u* = MA%u* (1)

Assume that each of the homogeneous equations (1.7) generates a complete
set of eigenfunctions, {,} and {u,’:‘} which are normalized as follows:

; . 1 n . - N ' ;/,\4 B
(um m) {0’ n # m’ : ’ - '(la’
and the éorrespondirig elgenvalues A(A) belong to the mterval
oA) S AA) S BA)
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This complete set of eigenfunctions will be called a biorthogonal basis. Thus,
under the assumption of completeness, arbitrary functions f € ® and f* € ®*
can be represented in the form of a Fourier series

=Y futhy fr=Y fru (19)

where
L=Luh), =" u,) (1.10)

{(In what follows, we use @, ®* instead of & 4), &(A4*) for the sake of simplicity).
Of great importance in the analysis of numerical algorithms are the
norm estimates of operators. A norm of an operator A is defined as follows:
(49, Ad)
|A})? = sup "~ 1.11

¢#0

(in order to simplify notation the qualification ¢ # 0 will not be explicitly
mentioned again). Since

(Ad, Ad) = (¢, A*A$),

the square of the norm of A can also be expressed in the following way:

(6, A*Ag)
1412 = 229
A" = sup =8 9)

The operator A*A4 is symmetric and positive semidefinite. Consider the spec-
tral problem

(1.12)

A*AQ = J(4*A)Q _ (1.13)

This problem defines a family of eigenfunctions {Q,} and eigenvalues
A{A*A) Z 0. We will assume that {Q,} isa complete set. Then the function ¢
has the following Fourier expansion:

¢=13 ¢,Q, (1.14)
where
d, = (6, Q,). (1.15)

Using the orthonormality of the functions Q,, the substitution of Series
(1.14) into (1.12) yields ' '

41 = sup Ao, - (1.16)
{¢nleQ Z ¢3
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where Q is the space of Fourier coefficients. It is easy to see that

1
e = A (A*A) = o(A*A),
jATT]? = Amin(ATA) = A7) (1.17)

141 = Anaa(4*A) = B(A*A),

wherel,;, is the smallest and 4,,,,, is the greatest eigenvalue respectively in the
set {4,(A*A)} for (spectral) Problem (1.13). The quantity f(4*A4) = A,,.(A*A)
is usually called the spectral radius of the operator A*A. In general, the spec-
tral radius is defined as f(A4) = sup{|A(4){}. Note that for (4) > 0 the spec-
tral radius p(4) = sup{i(4)}.

.In the case of a selfadjoint operator A consider the spectral problem

Au = Ju. (1.18)
We have
: A4l = B(A). (1.19)
It is not difficult to see that for a selfadjoint operator
B(4%) = [BA)Y. (1.20)

Consider a fixed closed positive operator C on the Hilbert space L,(D).
We will call it the energy operator. Thus

Céd,d)>0 . (1.21)

for all ¢ € ®, the domain of C dense in Ly(D). In other words, for any element
f € Ly(D) there is an element ge ® such that || f — gl < ¢, where ¢ is an
arbitrarily small, positive constant. Denote by ®* = &(C*) the domain
of definition of the adjoint operator C*. Assume ®* coincides with ® Then
C*¢ exists for all ¢ € ® and (C*¢, ¢) = (¢, C¢) = (C¢, ¢). Consequently
(Cé, ¢) = 3{C + C*14, ¢), where §{C + C*) is now a symmetric, positive
operator. This allows one to introduce a new inner product in ®, namely

(/.9 = (Cf,9)
and the norm M ‘ ;
| I$1¢ = (Cé, ¢) = (Co, 4),
where C = 4{C + C*]. This norm will be called the energy norm. One can
obtain the following significant estimate:
1612 = 1612 £ ITH 12 = AD IS, (1.2%

where B(C) is the largest cigenvalue of the operator C. .

In conclusion let us note that in dealing with problems of mathematical
physics and their adjoints it is often convenient to use functions from the
Sobolev space W(D). This space is a Hilbert space of L,(D) functions whose
gencralized derivatives up to and including /th order are square integrable in
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D. The inner product in such a space is defined by the formula (see Sobolev
(1], Viadimirov {2])
~ o*u v
(U, )y = db. (1.23)
b kZO % ), 5 o
Here we have used the following notation for the partial derivatives:
2o _
axk T X% Ox
The norm in the space W(D) is defined by the relation

iy = (D, Dwi- (1,24)

¢9a1 +".+an=k'

1.1.1. Norm Estimates of Certain Matrices

Let us consider a positive semidefinite matrix A = 0 on the Euclidean
space. Then for any value of the parameter o 2 0 we have the following
relation:

(E + aA)~ 1 st (1.25)
For the proof of this important proposition we 3xploit the formula

~ ((E + 0A)” '¢ (E +04)” ‘4)) )
E Y = max ——— 2 2 2
E,+ cA)™ || ¢ TR (1.26}

Let-us introduce new elements
Y =(E+cA) ¢
Then

. (W, ¥)
I (E + a4)™ ! m:lx (E + oA, (E + cAW)

1
A0, AV AR
W T e

Since A 2 0 on the elements ¢, y, the last relation implies (1.25). If 4 > 0,
then for 6 > 0 we have immediately

min[l + 20
v

IE + o)™ < L. (1.27)
Kellogg’s lemma [15). For any mairix A 2 0 and for any ¢ 2 0 one has
HE — 6ANE + o) Y < 1. o (1.28)
For the proof let us define T by
= (E — cA)(E + cA)™ !,
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and consider the expression for || T}|%:

2 (E — 6A)E + 6A4) ¢, (E — cA)E + cA)"'¢)
1T = max ©, 9)
(E — cAW, (E - )

= X AW, (E + 0AW)

— max W, V) — 20(AY, ¥) + 0*(AY, AY)
v (L) + 204, §) + o*(4Y, AY)

Here the crucial role has been played by the positive semidefinitness of the
matrix A. The lemma is proved.

In the case when the matrix A is positive and ¢ > 0, the expression (1.28)
is replaced by

<.

I(E — 6ANE + 64)™ | < 1. (1.29)

1.1.2. Computing the Spectral Bounds of a Positive Matrix

Consider the problem of finding the largest and smallest eigenvalues of a
matrix A > 0 with a positive spectrum. The approach below is due to
Lyusternik [4].

Assume that the spectral problem

Au = Ju (1.30)

defines a complete set of eigenfunctions u, € ®, and a set of eigenvalues
A{A). (A fairly complete treatment of spectral problems can be found in the
papers by Marek [8].) Consider the iterative process

¢t = (1/c,)A¢™,
¢V =g,

where ¢ is an arbitrary nonzero vector, and c, is a normalizing factor which
can be conveniently chosen in the form

& =19 = /Y 1992
Cp
Here ¢ is the pth component of the vector ¢®. Thus

¢(va)
II ™I

Let 0 <(d)=2, 5--- <4, , <4, = flA). Clearly, the following re-
lation holds: ’

Y = (1.31)

B(A) = Lim [j¢™)). ©(1.32)

[ a8



