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Abstract

Production systems (or rule-based systems) are widely used in Artificial Intelligence for
modeling intelligent behavior and building expert systems. Most production system programs,
however, are extremely computation intensive and run quite slowly. The slow speed of execu-
tion has prohibited the use of production systems in domains requiring high performance and
real-time response. This thesis explores the role of parallelism in the high-speed execution of
production systems.

On the surface, production system programs appear to be capable of using large amounts of
parallelism — it is possible to perform match for each production in a program in parallel. The
thesis shows that in practice, however, the speed-up obtainable from parallelism is quite limited,
around 10-fold as compared to initial expectations of 100-fold to 1000-fold. The main reasons
for the limited speed-up are: (1) there are only a small number of productions that are affected
(require significant processing) per change to working memory; (2) there is a large variation in
the processing requirement of these productions; and (3) the number of changes made to work-
ing memory per recognize-act cycle is very small. Since the number of productions affected and
the number of working-memory changes per recognize-act cycle are not controlled by the im-
plementor of the production system interpreter (they are governed mainly by the author of the
program and the nature of the task), the solution to the problem of limited speed-up is to some-
how decrease the variation in the processing cost of affected productions. The thesis proposes a
parallel version of the Rete algorithm which exploits parallelism at a very fine grain to reduce
the variation. It further suggests that to exploit the fine-grained parallelism, a shared-memory
multiprocessor with 32-64 high performance processors is desirable. For scheduling the fine-
grained tasks consisting of about 50-100 instructions, a hardware task scheduler is proposed.

The thesis presents simulation results for a large set of production systems exploiting different
sources of parallelism. The thesis points out the features of existing programs that limit the
speed-up obtainable from parallelism and suggests solutions for some of the bottlenecks. The
simulation results show that using the suggested multiprocessor architecture (with individual
processors performing at 2 MIPS), it is possible to obtain execution speeds of about 12000
working-memory element changes per second. This corresponds to a speed-up of 10-fold over
the best known sequential implementation using a 2 MIPS processor. This performance is sig-
nificantly higher than that obtained by other proposed parallel implementations of production
systems.
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1 Introduction

Production systems (or rule-based systems) occupy a prominent position within the field of
Artificial Intelligence. They have been used extensively to understand the nature of intelligence
— in cognitive modeling, in the study of problem-solving systems, and in the study of learning
systems (2, 45, 46, 65, 76, 77, 95]. They have also been used extensively to develop large ex-
pert systems spanning a variety of applications in areas including computer-aided design,
medicine, configuration tasks, oil exploration [11, 14, 40, 42, 43,56, 57, 84).  Production-
system programs, however, are computation intensive and run quite slowly. For example, OPSS
[10, 19] production-system programs using the Lisp-based or the Bliss-based interpreter ex-
ecute at a speed of only 8-40 working-memory element changes per second (wme-changes/sec)
on a VAX-11/780.1 Although sufficient for many interesting applications (as demonstrated by
the current popularity of expert systems), the slow speed of execution precludes the use of
production systems in many domains requiring high performance and real-time response. For
example, one study that considered implementing the Harpy algorithm as a production system
[66] for real-time speech recognition required that the program be able to execute at a rate of
about 200,000 wme-changes/sec. The slow speed of execution of current systems also impacts
the research that is done with them, since researchers often avoid programming styles and sys-
tems that run too slowly. This thesis examines the issue of significantly speeding up the execu-
tion of production systems (several orders of magnitude over the 8-40 wme-changes/sec). A
significant increase in the execution speed of production systems is expected to open up new
application areas for production systems, and to be valuable to both the practitioners and the
researchers in Artificial Intelligence.

There also exist deeper reasons for wanting to speed up the execution of production systems.
The cognitive activity of an intelligent agent involves two types of search: (1) knowledge
search, that is, search by the agent of its knowledge base to find information that is relevant to
solving a given problem; and (2) problem-space search, that is, search within the problem space
[65] for a goal state. Problem-space search manifests itself as a combinatorial AND/OR search
[68]. Since problem-space search when not pruned by knowledge is combinatorially explosive,

IThis corresponds to an execution speed of 3-16 production firings per second. On average, 2.5 changes are
made to the working memory per production firing.



a highly intelligent agent, regardless of what it is doing, must engage in a certain amount of
knowledge search after each step that it takes. This results in knowledge search being a part of
the inner loop of the computation performed by an intelligent agent. Furthermore, as the intel-
ligence of the agent increases (the size of the knowledge base increases), the resources needed to
perform knowledge search also increase, and it becomes important to speed up knowledge
search as much as possible.

As an example, consider the problem of determining the next move to make in a game of
chess. Problem-space search corresponds to the different moves that the player tries out before
making the actual move. However, the fact that he tries out only a small fraction of all possible
moves requires that he use problem and situation-specific knowledge to constrain the search.
Knowledge search corresponds to the computation involved in identifying this problem and
situation-specific knowledge from the rest of the knowledge that the player may have.

Knowledge search forms an essential component of the execution of production systems. Each
execution cycle of a production system involves a knowledge-search step (the match phase),
where the knowledge represented in rules is matched against the global data memory. Since the
ability to do efficient knowledge search is fundamental to the construction of intelligent agents,
it follows that the ability to execute production systems with large rule sets at high speeds will
greatly help in constructing intelligent programs. In short, the match-phase computation
(knowledge search) done in production systems is not something specific to production systems,
but such computation has to be done, in one form or another, in any intelligent system. Thus,
speeding up such computation is an essential part of the construction of highly intelligent sys-
tems. Furthermore, since production systems offer a highly transparent model of knowledge
search, the results obtained about speed-up from parallelism for production systems will also
have implications for other models of intelligent computation involving knowledge search.

There are several different methods for speeding up the execution of production systems: (1)
the use of faster technology; (2) the use of better algorithms; (3) the use of better architectures;
and (4) the use of parallelism. This thesis focuses on the use of parallelism. It identifies the
various sources of parallelism in production systems and discusses the feasibility of exploiting
them. Several implementation issues and some architectural considerations are also discussed.
The main reasons for considering parallelism are: (1) Given any technology base, it is always
possible to use multiple processors to achieve higher execution speeds. Stated another way, as
technology advances, the new technology can also be used in the construction of multiple
processor systems. Furthermore, as the rate of improvement in technology slows (as it must)
paralielism becomes even more important. (2) Although significant improvements in speed
have been obtained in the past through better compilation techniques and better algorithms
[17, 20, 21, 22], we appear to be at a point where too much more cannot be expected. Further-
more, any improvements in compilation technology and algorithms will probably also carry
over to the parallel implementations. (3) On the surface, production systems appear to be
capable of using large amounts of parallelism — it is possible to perform the match for each



production in parallel. This apparent mismatch between the inherently parallel production sys-
tems and the uniprocessor implementations, makes parallelism the obvious way to obtain sig-
nificant speed up in the execution rates.

The thesis concentrates on the parallelism available in OPSS5 [10] and Soar [47] production
systems. OPS5 was chosen because it has become widely available and because several large,
diverse, and real production-system programs have been written in it. These programs form an
excellent base for measurements and analysis. Soar was chosen because it represents an inter-
esting new approach in the use of production systems for problem solving and learning. Since
only OPSS5 and Soar programs are considered, the analysis of parallelism presented in this thesis
is possibly biased by the characteristics of these languages. For this reason the results may not
be safely generalized to production-system programs written in languages with substantially dif-
ferent characteristics, such as EMYCIN, EXPERT, and KAS [60, 96, 14].

Finally, the research reported in this thesis has been carried out in the context of the
Production System Machine (PSM) project at Carnegie-Mellon University, which has been ex-
ploring all facets of the problem of improving the efficiency of production systems
(22, 23, 30, 31, 32, 33]. This thesis extends, refines, and substantiates the preliminary work
that appears in the earlier publications.

1.1. Preview of Results

The first thing that is observed on analyzing production systems is that the speed-up from
parallelism is quite limited, about 10-fold as compared to initial expectations of 100-fold or
1000-fold. The main reasons for the limited parallelism are: (1) The number of productions that
require significant processing (the number of affected productions) as a result of a change to
working memory is quite small, less than 30. Thus, processing each of these productions in
parallel cannot result in a speed-up of more than 30. (2) The variation in the processing require-
ments of the affected productions is large. This results in a situation where fewer and fewer
processors are busy as the execution progresses, which reduces the average number of proces-
sors that are busy over the complete execution cycle. (3) The number of changes made to work-
ing memory per recognize-act cycle is very small (around 2-3 for most OPSS systems). As a
result, the speed-up obtained from processing multiple changes to working memory in parallel is
quite small,

To obtain a large fraction of the limited speed-up that is available, the thesis proposes the
exploitation of parallelism at a very fine grain. It also proposes that all working-memory
changes made by a production firing be processed in parallel to increase the speed-up. The
thesis argues that the Rete algorithm used for performing the match step in existing uniprocessor
implementations is also suitable for parallel implementations. However, there are several
changes that are necessary to the serial Rete algorithm to make it suitable for parallel implemen-
tation. The thesis discusses these changes and gives the reasons behind the design decisions.



The thesis argues that a highly suitable architecture to exploit the fine-grained parallelism in
production systems is a shared-memory multiprocessor, with about 32-64 high performance
processors. For scheduling the fine grained tasks (consisting of about 50-100 instructions), two
solutions are proposed. The first solution consists of a hardware task scheduler. The hardware
task scheduler is to be capable of scheduling a task in one bus cycle of the multiprocessor. The
second solution consists of multiple software task queues. Preliminary simulation studies in-
dicate that the hardware task scheduler is significantly superior to the software task queues.

The thesis presents a large set of simulation results for production systems exploiting different
sources of parallelism. The thesis points out the features of existing programs that limit the
speed-up obtainable from parallelism and suggests solutions for some of the bottlenecks. The
simulation results show that using the suggested multiprocessor architecture (with individual
processors performing at 2 MIPS), it is possible to obtain execution speeds of 5000-27000 wme-
changes/sec. This corresponds to a speed-up of 4-fold to 23-fold over the best known sequential
implementation using a 2 MIPS processor. This performance is significantly higher than that
obtained by other proposed parallel implementations of production systems.

1.2. Organization of the Thesis

Chapter 2 contains the background information necessary for the thesis. Sections 2.1 and 2.2
introduce the OPSS and Soar production-system formalisms and describe their computation
cycles. Section 2.3 presents a detailed description of the Rete algorithm which is used to per-
form the match step for production systems. The Rete algorithm forms the starting point for
much of the work described later in the thesis. Section 2.4 presents the reasons why it is inter-
esting to parallelize the Rete algorithm.

Chapter 3 lists the set of production-system programs analyzed in this thesis and presents the
results of static and run-time measurements made on these production-system programs. The
static measurements include data on the surface characteristics of production systems (for ex-
ample, the number of condition elements per production, the number of attribute-value pairs per
condition element) and data on the structure of the Rete networks constructed for the programs.
The run-time measurements include data on the number of node activations per change to work-
ing memory, the number of working-memory changes per production firing, etc. The run-time
data can be used to get rough upper-bounds on the speed-up obtainable from parallelism.

Chapter 4 focuses on the sources of parallelism in production-system implementations. For
each of the sources (production parallelism, node parallelism, intra-node parallelism, action
parallelism, and application parallelism) it describes some of the implementation constraints, the
amount of speed-up expected, and the overheads associated with exploiting that source. Most of
the chapter is devoted to the parallelism in the match phase; the parallelism in the conflict-
resolution phase and the rhs-evaluation phase is discussed only briefly.



