S ELET

A Programmer’s Guide

)

Fred Zlotnick

Staﬁdérd

A Programmer’s Guide

Fred Zlotnick

Mindcratft, Inc.
Palo Alto, California

W1A L
& LG
g, L,

HMI>

The Benjamin/Cummings Publishing Company, Inc.
Redwood City, California « Menlo Park, California + Reading, Massachusetts
New York < Don Mills, Ontario + Wokingham, U.K. « Amsterdam

Bonn ¢ Sydney « Singapore * Tokyo * Madrid ¢« San Juan

Sponsoring Editor: John Thompson
Production Supervisor: Laura Kenney
Freelance Project Management: Gary Palmatier
Copy Editor: Anna Huff

Composition and Illustration: Ideas to Images

Cover illustration: Rainbow Kite © 1991 Mr. Screens

Copyright © 1991 by The Benjamin/Cummings Publishing Company, Inc.

Allrights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

UNIX is a trademark of AT&T in the U.S.A. and other countries.

Many of the designations used by manufacturers and sellers to distinguish

their products are claimed as trademarks. Where those designations appear
in this book, and Benjamin/Cummings was aware of the trademark claim,

the designation has been printed in initial-capital or all-capital letters.

Library of Congress Cataloging-in-Publication Data

Zlotnick, Fred.
The POSIX.1 standard : a programmer’s guide / Fred Zlotnick.
cm.

Includes index.
ISBN 0-8053-9605-5

1. UNIX (Computer file) 2. Operating systems (Computers)—
Standards— United States. I. Title. II Title: POSIX dot one standard.
III. Title: POSIX point one standard.

QA76.76.063257 1991
005.4'3—dc20 91-9770
cIp

23456 7 89 10 -DO- 95 94 93 92 91
The Benjamin/Cummings Publishing Company, Inc.

390 Bridge Parkway
Redwood City, Califomia 94065

Preface

About POSIX

The UNIX® system was 10 years ahead of its time, but it is now more than 20
years old. This is not to say that UNIX is now out of date. On the contrary, it
has become the dominant operating system for much of the computing
industry. It is a de facto standard.

The fact that UNIX systems run on so many different types of hardware
has made it possible for application programmers to write portable pro-
grams that are not limited to a single manufacturer’s platform. However, the
widespread acceptance of UNIX has been accompanied by a number of
problems, chief among them a proliferation of different, incompatible versions.
In fact, the UNIX system does not represent one standard but several, all
mutually incompatible. The POSIX standardization effort began as an at-
tempt to deal with this problem by establishing an official standard that, as
far as possible, is compatible—from the program’s point of view—with the core
of most historical UNIX implementations. The purpose is to make portable
programs possible.

This book deals with the POSIX 1003.1-1990 standard. That standard—
commonly referred to as POSIX.1 (pronounced “pah-zix dot 1”) or more
informally as “dot 1”—describes an operating system interface for C language
programs. It is based on a number of documents; the 1984 /usr/group Standard
is its most direct ancestor. Most of the interface descriptions in POSIX can,
with slight variations, be found in one of two documents that describe
implementations of UNIX systems: the System V Interface Description (SVID)
published by AT&T and the 4.3 Berkeley Software Distribution (4.3BSD) Manuals.
In general, the philosophy of the 1003.1 committee was to adhere to existing
UNIX system interfaces unless there was a good reason to do otherwise.

The official name of the POSIX.1 standard is ISO/IEC IS 9945-1:1990.
The International Standards Organization (ISO) and International
Electrotechnical Commission (IEC) jointly oversee international computer
standards. In the United States, the American National Standards Institute
(ANS]) and the Institute of Electrical and Electronics Engineers (IEEE) are

vi PREFACE

responsible for computer standards, and ANSI/IEEE Std. 1003.1-1990
is another official name for the POSIX.1 standard. We simply use the
informal name POSIX.1 or (even more simply) just POSIX when no

confusion can arise.

The “-1” in 9945-1:1990 and the “.1” in POSIX.1 both refer to the fact
that other operating system interface standards are being developed to cover
areas not in the purview of the current standard. These standards are under
development by IEEE committees with numbers like 1003.2 (developing
POSIX.2). The name POSIX is almost an acronym for Portable Operating
System Interface. The “IX” suffix is traditional. The name POSIX was
suggested by Richard Stallman.

All major vendors of the UNIX system either are delivering POSIX.1
conforming systems now or are committed to doing so. Such systems include
or will include OSF/1, System V, and BSD. Vendors of some other major
operating systems that are not based on the UNIX system, including VMS
and OS/2, have also committed to POSIX.1 conformance. Thus, the POSIX
effort has moved well beyond the world of UNIX systems in which it
originated. Each POSIX.1 implementation will also contain vendor-specific
extensions to POSIX, either for compatibility with historical versions or as
“value-added” features. If an application programmer is to avoid
implementation dependence, he or she must make careful use of the standard’s
features and avoid nonportable vendor-supplied features.

Goals

The POSIX.1 standard makes it possible to write application programs that
are portable across a wide variety of systems and architectures. The goal of
the book is to show you how to take advantage of that possibility. Our

specific goals are to:

e Explain the syntax and semantics of the 203 C functions and macros
supported by the POSIX.1 standard and the data structures that sup-

port them.

* Give an understanding of the concepts that you need to use these
interfaces and data structures effectively.

e Show how other standards and specifications interact with POSIX.1.

e Show how you can use the POSIX.1 standard to package a portable
application, including source code and supporting files.

e Explain the limits of the POSIX.1 standard.

The principal goal of the book is to teach programmers how to write programs
that will run under any implementation of POSIX.1—Strictly Conforming
POSIX.1 Applications, in the language of the standard. Note that POSIX.1

PREFACE vii

explicitly addresses application programs only. Interfaces needed for system
administration or system programming are not supported.

Audience

This book is written for computer professionals and for students of operating
systems,

* Software engineers can only hope to write portable application pro-
grams by adhering to the POSIX.1 standard.

* Software engineers who are implementing systems must take POSIX.1
as a partial specification.

* Software engineering managers need to know the possibilities and
limits of portable programming using POSIX.1 to understand what
degree of portability their programming teams can reasonably be ex-
pected to achieve.

* Managers in charge of hardware procurements must understand what
vendors do and do not guarantee when they claim to be “POSIX con-
forming.”

e Students should know the features guaranteed by an international
operating system interface standard.

Features

This book includes the following features: prototypes for all functions; sample
code; appendices for reference; exercises; and a glossary.

Prototypes for All Functions

-

In the chapters and appendices of this book, C functions are described using
the prototype format of the ANSI C standard. Even if you are not familiar
with the prototype format, you should be able to understand the code. Here
is an example: the C library function strcpy() would be described like this in
“old style”:

char *strcpy (sl, s2)
char *sl, *s2;

A prototype for this function is written with the argument list, including
type information, inside the parentheses:

char *strcpy (char *sl1, const char *s2);

Vil PREFACE

The names of the parameters are optional. Thus, an equivalent way to write
this prototype is: '

char *strcpy (char *, const char *);

The reserved word const in front of the second argument is an addition to
the language by the ANSI C committee. (It is borrowed from the C++ lan-
guage.) It indicates that the object pointed to by the second argument cannot
be modified by a call to the strcpy() function. The absence of this qualifier in
front of the first argument indicates that the object pointed to by the first
argument can be modified by the function.

As a special case, if a function has no arguments, its ANSI C prototype
is written with a parameter list consisting of the single reserved word void. For
example:

char *getlogin(void);

There is a special notation for prototypes of functions that take a vari-
able number of arguments. The fixed arguments, if any, are declared as in

other prototypes. In place of the variable arguments, you put an ellipsis
(.. .). For example, a prototype for fprintf() is:

int fprintf (FILE *stream, char *format, ...):
The identifiers st ream and format also can be omitted:
int fprintf(FILE *, char *, ...);

Every POSIX.1 function is associated with a header. (The terms header file
and include file are obsolete; see Chapter 1, Section 1.2.) When a prototype for
a function is presented, the header in which its prototype appears on C
standard systems is also given, as well as all other headers that should be
included when that function is used.

Sample Code

Most functions that have been introduced by the POSIX.1 committee, or with
semantics that have changed significantly from UNIX systems, are used in
examples in the text. These examples illustrate how the functions are intended
to be used.

Appendices for Reference

The body of this book is written in a “how-to” format. For those who wish to
use the book as a reference, appendices are provided.

» Appendix A gives, for each POSIX.1 function that is not imported from
the C standard, the function’s headers, prototype, return values, pos-
sible errno values, and a brief description of the function’s semantics.

PREFACE ix

* Appendix B does the same for the POSIX.1 functions that come from
the C standard.

* Appendix C describes the 37 portable values of errno that are sup-
ported by POSIX.1.

* Appendix D lists the headers specified by either POSIX.1 or the C
standard and the reserved name-space associated with each header.
(See Chapter 1, Section 1.6.) This name-space includes functions, mac-
ros, typedefs, structures, and external variables.

¢ Appendix E lists those POSIX.1 functions that can be safely invoked
from a signal-catching function.

e Appendix F gives references to other POSIX standards and proposed
standards and to related documents.

Exercises

Exercises are provided at the end of most chapters. Every reader should try
some of them to test his or her understanding. They can also be used in a

classroom setting.

Glossary

A glossary defining some of the most important terms is included.

About Portability and This Book

Programmers face two different classes of problems when trying to write
portable programs. One class deals with nonportabilities intrinsic to the
language. For example, it's easy to write C programs that make 1mp11c1t
assumptions about byte order within integers, about the relative sizes of
pointers and integers, or about the layout of fields within structures. Any of
these assumptions can render the program unportable. One might term these
internal portability issues. They arise in all programming languages, although
C is particularly vulnerable to them. Internal portability has to do with the
relationship of the program’s own code to hardware; it is under the complete
control of the programmer.

Another class of problems has to do with the choice of external inter-
faces (functions and macros) that a program uses, the semantics that the
program assumes for these interfaces, and the types of arguments that the
program passes and return values that it expects. These might be termed
external portability issues. They deal with the code invoked by, but external

X PREFACE

to, the program: the libraries and system calls that the program depends on.
Problems of external portability arise in many programming languages, but
again C is particularly vulnerable, because of its heavy dependence on
libraries. External portability is only under the control of the programmer if
the external interfaces are standardized. Without standards, external
portability is impossible.

This book deals with external portability in the context of POSIX con-
forming systems. If you've tried to move C programs from one UNIX system
to another you may have noticed that, while some programs compile with-
out change and behave identically, others either don’t compile or don’t run
in quite the same way. Given the differences among UNIX systems, this is
unavoidable. In principle, if you write a Strictly Conforming POSIX.1 Appli-
cation program it should compile on all POSIX.1 systems (or on none) and
should have, within certain constraints, the same semantics on all of them.

Structure

Chapter 1 presents an overview of POSIX.1 concepts. This is the sort of
material that programmers like to skip, to get to the “real code”, but in fact
it’s essential in order to understand the issues that shaped the standard.
Chapters 2 through 8 present the POSIX.1 C- language application program-
mmg interface (API). The APl is the set of programming interfaces specified
in the standard. Chapter 9 describes the data interchange formats specified
by the standard. Chapter 10 describes the current state of proposed future
extensions to POSIX.1. Chapter 11 discusses related standards, draft
standards, and specifications, including the work of other POSIX groups and
the X/Open Portability Guide. Finally, Chapter 12 discusses some general
portability considerations for C programs. The six appendices were
described above.

Acknowledgments

Only someone who has authored a book can know how much the book
depends on the efforts of others. I have been fortunate to have the assistance
of able reviewers, editors, and colleagues, without whose help this book
could not have been written. Clarke Echols of Hewlett-Packard, Randolph
Bentson of Colorado State University, Mark Sobell of Sobell Associates, and
Claudia DeBlauw of Mindcraft all reviewed early portions of the manu-
script. Robert Bismuth of DEC and Kathy Bohrer of IBM read portions of
later drafts of the manuscript and made many valuable suggestions. Jim
Isaak of DEC read two complete drafts of the manuscript, corrected many
errors, and provided valuable advice and suggestions. I thank all of these
people for their efforts. I also have had the good fortune to work with a very

PREFACE Xi

able editorial and production staff at Benjamin/Cummings: Alan Apt, John
Thompson, Vivian McDougal, and Laura Kenney guided me through the
complex process that ends in a published book. Anna Huff and Gary Palmatier
did a thorough, capable job of copy editing and production.

I owe a special debt to my colleagues at Mindcraft, especially Bruce
Weiner and Chuck Karish. Bruce introduced me to POSIX and to the standards
way of thinking. Chuck read several drafts of this book with great care,
pointing out many errors and making numerous worthy suggestions.
He also helped me to read and interpret the POSIX.1 standard, with an
attention to detail and subtlety that was invaluable. To all of these people 1
give sincere thanks.

Despite all this help, it is possible (and perhaps inevitable) that errors
remain in the text. Of course, the responsibility for such errors is mine alone.
Any reader who finds errors, or has suggestions, should notify me either
through Benjamin/Cummings or, if desired, by electronic mail over the
Internet. I can be reached at the Internet address fred@mindcraft.com.

Finally, I thank my wife, Linda Garfield, for giving me encouragement
and putting up with the trials that are known only to authors’ spouses, and
my sons, Ben and Micah, who also encouraged me and (almost always) left
me time and space to write when I asked them to, even when they were beset
by the urgent needs of adolescence. And thanks, Flash, for curling up at my
feet while I wrote.

Brief Contents

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

Chapter 10:

Chapter 11:

The POSIX Environment ... 1
Process and System Attributes ... 29
Files and Directories ... 53
Inputand OQutput ... 83
Signals ... 105

Process Creation and

Synchronization ... 135
Controlling Terminal Devices 157
ANSI C Standard Functions 177
Data Interchange Formats ... 207
Proposed Revisions to POSIX.1 ... 227
Related Standards ... 241

xili

Xiv BrIEFr CONTENTS

Chapter 12: General C Portability

Considerations ... 263
Appendices:
A: POSIX.1 Functions ... 277
B: ANSI C Functions in POSIX.1 ... 307
C: Error Numbers ..., 331
D: Headers and Their Contents ... 337
E: Signal-Safe Reentrant Functions ... 347
F: Accessto Standards ... 349

References 353

Glossary 355

Index 363

Detailed Contents

Chapter 1: The POSIX Environment ...

LT OUE GOQAl e e eee oo oo

1.1.1 Implementation Conformance 2
1.1.2 Application Conformance 4
1.1.3 Our Goal, Restated 5

1.2 The POSIX.1 Environmentcccoenmrommrvirovrreecreinseserresinns
1.3 Some Differences between UNIX and POSIX Systems ..

1.4 Configuration OpHONScccomerommecsmmrionssinnns e sresessesssenss
15 Determining Configuration Values during Execution ...
1.6 Standard Types ... s sssssssennes
1.7 Name-Space Pollutioncncecnneeneieieessssesns
1.8 Environment SHiNGScicovcmeivionneicisirissiieseessiesses s,
Chapter 2: Process and System Attributes ...
21 Determining Current Process Attributes ...,

2.1.1 BSD Job Control Concepts 30
2.1.2 System V Process Groups 31

2.1.3 POSIX Process Groups, Sessions, and
Controlling Terminals 31

2.2 Process User and Group IDscccoomominmerrcnnnrennercnesrinesions
221 Supplementary GroupIDs 38
2.3 Whoand Where AmI? ...t

2.4 System Databases and Securityc.coooovervvnvrcioiee e

xvi

DETAILED CONTENTS

2.5 Current Working Directory ...
2.6 Environment SIrings ...
2.7 Process TIMES ...t ssisss
2.8 System Time ... s
2.9 System NAME ..o s
Chapter 3: Files and Directories ...
3.1 Pathname Resolution ...
3.2 Determining File Characteristics ...

3.2.1 File Access Permission 58
3.3 File Descriptors and Open File Descriptionsc.cc.....
3.4 Regular Files ... s
3.5 DHIECEOIIEScooviririiiirciirierinse sttt
3.6 PIPES .o s
3.7 FIFO Special Files ...t
3.8 Block and Character Special Filesccccoomeivernivninisinaronenee
3.9 Controlling File Attributes ...
3.10 Renaming Files ...
Chapter 4: Inputand Output ...
4.1 Controlling Open File Descriptionscwennisciens
4.2 Controlling File DeScriptors ...
4.3 Reading Regular Files ...
4.4 Reading Special Files ...
4.5 Writing Regular Files ...

4.5.1 A Simple Example 94

4.5.2 1/0 Synchronization 94
4.6 Writing Special Files ...
4.7 File LOCKING ...ccocovrimirieieninns e

4.7.1 File Locking and Deadlocks 100

DEeETAILED CONTENTS xvii

Chapter 5: Signals ... 105
5.1 Review of Signal Concepts and Implementation 105
5.1.1 The C Keyword volatile 109
5.2 The Unreliability of UNIX Signalsc.cccoovininiiinnninnnne, 110
5.3 Signal Data Structures in POSIX.1 ..o, 111
5.4 Establishing Signal Actions in POSIX.1 ..., 114
5.5 Blocking Signals ... 116
5.5.1 Actions for Blocked Signals 117
5.6 Special Considerations for Job Control Signals 117
5.7 Sending Signals ... s 119
5.8 Scheduling and Waiting for Signals ..., 121
5.9 Signals and Reentrancyocennnsoneresinnsnnine. 124
5.10 Signals and Non-Local Gotos ..., 126

Chapter 6: Process Creation and

Synchronization ... 135

6.1 Process Creation ..., 135
6.1.1 Handling fork() Failure 140

6.2 Program EXecution ..., 143

6.3 Synchronizing with Termination of a Child Process 146

6.3.1 Interpreting Child Status 149
6.3.2 Advantages of waitpid() over wait() 151

6.3.3 Interactions between wait()
and SIGCHLD 152

6.4 Process Termination ..., 152
Chapter 7: Controlling Terminal Devices ... 157
7.1 Controlling Terminals ... 157
7.2 INput PrOCESSING ..ot s nes 158

7.2.1 Special Characters 159
7.2.2 Canonical and Noncanonical Modes 160

xviii

7.3
7.4

DETAILED CONTENTS

The termios Data Structureoocevvveevvvecrevncneeereraea

Controlling Terminal Attributes ..o
7.4.1 Errors in Setting Terminal Attributes 170

7.5 Line CONMIOL ... sssnns
7.6 Terminal Access and Job Controlciivcririninnns
Chapter 8: ANSI C Standard Functions ...
8.1 Prototypes and Headers ...,
8.1.1 Headers in ANSI C and POSIX 180
8.2 Stream IO ... e
8.2.1 File Handles 187
8.2.2 Which Kind of 1/0O Should You Use? 187
8.3 InternationaliZation ...
8.3.1 Locale Categories 195
8.3.2 Using Locales 197
8.4 Time Funclions ...
8.4.1 Time Zones and Daylight Savings Time 199
8.4.2 More about Time Functions 201
Chapter 9: Data Interchange Formats ...
9.1 Packaging Applicationsccveiriveiinirinsiinnsnesis s
9.1.1 Packaging Source Files 209
9.1.2 Packaging Binary Executable Files 211
9.1.3 Packaging Data Files 212
9.14 Pathnames 215
9.2 Extended tar Format ...
9.2.1 Restoring Extended tar Archives 221
9.3 Extended cpio Format ...

9.4

9.3.1 Restoring Extended cpio Archives 224
Future Directons ... s

DETAILED CONTENTS

Xix

Chapter 10: Proposed Revisions to POSIX.1 ... 227

10.1

10.2

Chapter 11: Related Standards

11.1

11.2
11.3

11.4

11.5

Proposed New Interfaces ...,

10.1.1 Symbolic Links 228
10.1.2 Changing Attributes of Open Files 231

10.1.3 Clarification of getgroups() and
Supplementary Groups 232

10.1.4 Setting Effective User and Group IDs 233
10.1.5 Manipulating Environment Variables 233
10.1.6 Input and Output 234

10.1.7 Traversing File Trees 235

10.1.8 Message Catalogues and Internationalization
10.1.9 New Feature Test Macro 238

Proposed Language-Independent Interface

The POSIX.1FIPS ...

11.1.1 Portable Application Programs
and the POSIX.1 FIPS 244

The TCOS Project ..o
Interactions with 1003.2ccoooviviiirinireneenenrenens

11.3.1 Name-Spaces 247

Other POSIX Standardsccoovimvviinrnneceiinininnns

11.4.1 The POSIX Guide: 1003.0 254

11.4.2 Shell and Tools: 1003.2 254

11.4.3 Verification of Conformance: 1003.3 255
11.4.4 Real-Time Systems: 1003.4 256

11.4.5 Other POSIX Committees 258

11.4.6 The 1201 Committee 260

The X/Open Portability Guideccconrveneunncn.

Chapter 12: General C Portability

12.1

Considerations

What C Does Not Guaranteeccceovevrennrieenvenen.

12.1.1 Questions of Sign and Sign Extension 263

