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Introduction to thermal conductivity

1.1 The significance of heat conduction

Human appreciation of the importance of the conduction of heat begins
with the well-known fact that some things, a piece of metal for instance,
feel cold to the touch while others, for example a piece of wood, feel
warm. The reason for.this is that metal conducts heat away from the
body faster than wood. All-year-round human occupation of the
temperate and colder parts of the Earth’s surface has alwayg depended on
the ability to control the loss of heat from the body. Amongst the things
that feel warm because of their low thermal conductivity are the futs, skins,
and woven cloth used by mankind for millenia for protection against
external cold. Similar considerations govemn the choice of building
materials, particularly in more recent times under the impact of technology
employing the results of scientific anslysis of heat transfer. The reverse
problem arises in a spacecraft, where it is necessary to keep the astronauts
cool during re-entry into the Earth’s atmosphere.

These examples all call for materials of low conductivity, but other
situations require a high rate of heat transfer. For example the need to
protect certain semiconductor devices from damage due to overheating
has led to the semiconductor being mounted on a diamond heat sink,
diamond having a higher thermal conductivity around room temperature
than any metal. This is an extreme case, but there are many others where
efficiency requires the transfer of heat with 8 minimum temperature
difference.

Thus we sometimes need a high, sometimes a fow thermal conductivity.
Often this will be associated with a requirement of good mechanical
strength or high electrical conductivity, and so on. This reveals that the
study of thermal conductivity often requires a context of materials
science, in the widest sense.

It will be clear that the existence of a body of data on thermal
conductivity and related properties will never suffice to meet the problems
posed by technology. What is also needed is theoretical understanding
which will enable us to predict the thermal conductivity of new materials,
and to guide us in our attempts to find materials to cope with new
requirements. In turn the testing of theories will challenge the experimenters
by requiring new standards of accuracy in measurement.

The interaction of theory and experiment has influenced the layout of this
book. It begins with some preliminary questions of definition and so
forth and then goes on to describe the methods by which accurate data
can be obtained. This is followed by an outline of the theory and of the
ways in which it may be applied to experimental results. Finally, the
behaviour of everyday practical materials is reviewed and considered.
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1.2 Thermal conductivity: Fourier’s law

The first clear statement of the proportionality of heat flow and
temperature gradient was made in 1822 by Fourier in his Theorie
Analytique de la Chaleur. 1t should be realised, however, that this kind of
linear law does not apply to other forms of heat transfer such as
convection or radiation where, although the heat flow is some function
of the temperatures of the two regions involved, this function will
generally be by no means simple. In fact in the case of solids a lack of
proportionality between apparent heat flow and temperature gradient
would often be regarded as evidence that some nonconductive mechanism
was at work. This might be due to a deficiency in the experimental
arrangement .or, very rarely, in the case of some materials transparent in
the infrared there might be a genuine component of heat transfer by
radiation.

The linear proportionality of heat flow and temperature gradient may
be supposed to be observed in a situation where there is a flat slab of
material of thickness Ax whose faces are isothermal surfaces but at
temperatures differing by an amount AT. We suppose that there is some
means of measuring the heat flow into and out of these surfaces. If the
slab is effectively thermally insulated at the edges and there are no internal
sources of heat, such as electric currents or radioactivity, then in a steady
state the rate of heat flow ® into one face equals that out of the other.
We then find that for a given slab

$ x AT,
and if we take varying thicknesses of slab then

d)or%z:.

‘Furthermore, if we now vary the area A of the slab,
AT

Q“AE;

this relation may then be used to define the thermal conductivity A thus

AT
d’—-ME'

From this line of argument it is possible to generalise to a vector heat
current density

U=-AgradT. .1,

The minus sign arises from the fact that heat always flows from the hotter
to the colder region. Equation (1.1) will be the form of Fourier’s law
generally used in this book.
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There are a number of qualifications which must be made with
reference to this line of argument: '
(i) Since the thermal conductivity is a function of the temperature, if one
works back from equation (1.1) to the original expression in terms of AT,
this will clearly break down if AT becomes large enough to encompass
significant changes in A.
(ii) Some materials are anisotropic with respect to heat conduction and it
will be seen that this will mean that the heat flux vector U will not ,
necessarily be parallel to grad 7. This requires the generalisation of (1.1)
to a form which can be expressed either by

=—Agrad 7, (1.2a)
where A is written as a dyadic, or by
oT ‘
U=~ = (l2b
i ;X,, ax, )

we have introduced here a tensor A;j having nine components, of which no
more than six may be different, because where i # j, N; = Ny. Equation
‘(1.2b) will sometimes be found without the summation being explicitly
written in, but then it is understood that repeated suffixes are summed
over. Fortunately, for polycrystalline materials and cubic crystals the
simple equation (1.1) will suffice.
(iii) Although the vectors U and grad T are defined as though at a point
in the solid, there will clearly be difficulties of a conceptual kind if this is
regarded too literally, since neither U nor grad T can have any meaning for
a single atom in a solid, Theoretical discussion always assumes that these
quantities are in fact defined with respect to regions which, although
small, contain enough atoms for the fluctuations in U and grad T to be
negligible. - ’
(iv) There may be problems relating to measurements on ratlier small but
otherwise completely homogeneous samples where, if the crosssectional
area is decreased, the heat current decreases more than proportipnaily.
Jhis ‘size effect’, as it ia called, really means there is no properly, defined
thermal conductivity at ail, but in practice the concept of a size-dlipendent
‘effective’ thermal conductivity is used. :
Anotherquectioneoqeemsvhetherthuemmymbﬁmyoordiﬁm
necessary for the meanipgful measurement of thermml sonductivity. There
appears at present to be only one, and this is that no electric current must
be flowing in the material under examination. The reasoh for this is that,
iftlwreisactmnﬁﬂnenthe?elﬁahuﬁmwmmmtmmm
leamthemateﬁalux;deWonmuybeinpd added to the
heat carried by conduction. Purthermore, there mmtmal
interference due to the Thomsom effect. Electric cugrents ‘would not
normally be deliberately passed through a specimen dueing a thermal
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conductivity experiment without these effects being allowed for, but
under some circumstances there might be currents passing due to the
Seebeck effect which would pass unnoticed. The most desirable way of
proceeding is to ensure open circuit conditions during the measurement of
thermal conductivity, unless the passage of 4 current is essential to the
method being employed. As a definition of thermal conductivity we must
add to equation (1.1) the condition

1=0, (1.3)
where ] is the electric current density.

1.3 Conservation of energy and the definition of thermal diffusivity

The linear law relating heat flow and temperature gradient gives only a
partial description of the thermal processes involved in solids. In particular
it is adequate only for steady state phenomena with no internal sources

of heat. To go further requires the use of the principle of conservation

of energy, otherwise known as the first law of thermodynamics.

Let us consider a small volume inside the conducting medium (the
meaning of ‘small’ is that discussed in the previous section). Then, if there
is no work being done on this volume, the change in its internal energy
will be given by the heat transfers across its boundaries. Thus, if AE, is the
internal energy at time ¢ = 0, and AE, that at time ¢, then

AE = AE, - AE, = AQ,

where AQ is the heat entering the small volume. This can be expressed in
terms of the time derivative of the internal energy and the heat current
integrated over the surface S:

dAE) _ _
e

where n is an outward directed normal to the surface. The term on the
left-hand side can be replaced by a volume integral over the internal
energy density E, whilst the right-hand side can be replaced by a volume
integral, using Gauss’s theorem. Then

U- nds,

oE . N
atd’x = IdwUd X,

’ or, since the integration volume is arbitrary,

oF

% -divU. . (1.4)

The changes in internal energy can be expressed in terms of the specific heat
¢ multiplied by the density 5:
oE

T
B =~ P = Ay,
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or, combining with Fourier’s law (equation 1.1),
2
cﬁ—azt: = div(agrad T'). (1.5)

This equation requires further discussion and elaboration. To begin with,
is the specific heat referred to that at constant pressure, c,, or constant
volume, ¢,? As the argument was presented above there is no doubt that ¢, is
appropriate, since work of any kind was excluded, which means no
changes in volume. However, this is not the usual experimental situation,
since it requires rigid constraints around the conductor to prevent the
normal change of volume by thermal expansion. If we use the condition
of constant pressure, then the place of the internal energy £ must be
taken by the enthalpy H, in which case the correct specific heat to employ
is ¢,. In actual fact a body containing temperature differences normally
also contains internal stresses and for that reason ¢, is not quite appropriate
either. But with a simple one-dimensional temperature gradient cp is likely
to be more nearly correct.

The form of equation (1.5) allows for the possibility of the thermal
conductivity varying with position, either owing to the temperature 3
gradient or to actual inhomogeneity of the conductor. However, in most
work this effect is neglected and (1.5) is written

oT
cﬁit‘ = AV?T,

or

o e, (1.6)
where a = A/cp is called the thermal diffusivity. Equation (1.6) is essential
in all discussions of time-varying thermal phenomena in homogeneous
media; there are appropriate modifications to allow for anisotropic
conductors. In the case of steady temperatures equation (1.6) reduces to
Laplace’s equation, V27T = 0.

In deriving equation (1.4) it was assumed that there was no work being
done, and it was subsequently shown that the possibility of the performance
of work to change the volume affected the proper definition of the
specific heat in (1.5). However, there are other examples involving work
which can be better regarded as heat generation within the conductor,
although this is not a very well-defined concept from the thermodynamic
point of view. As an example, if there is an electric current density j and
an electrical conductivity o (assumed scalar), then an external electromotive
force is doing a quantity of work j2/o in unit volume, which is normally
expressed as a heat generation of j2/o per unit volume. In this case
equation (1.4) becomes

r)

0E
a—t+d1vU =g a.n
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For any other process involving work done within the conductor there will
be a corresponding term added to equation (1.4) in the same way.

It has been pointed out that an equation such as (1.6) has certain rather
implausible consequences. If we consider for example a flat slab and apply
at a given instant a supply of heat to one face, then according to (1.6) there
is an instantaneous effect at the far face. This of course canncs oceur in
practice, since no signal can be ptopagated through the slab at infinite
velocity. One way of avoiding this is to modify (1.6) as follows:

1387 19%T

ViT= o wtaae
where u is a quantity having the dimensions of velocity. If u is made
equal to the velocity of sound, then the paradox of instantaneous
propagation is avoided, but the effect of this term is less than that of the
first for times greater than a/u®. For a good conductor these times are
about 107" s and they are even shorter for poor conductors. For all
practical purposes therefore equation (1.6) is quite satisfactory.

1.4 The physical mechanisms of the conduction of heat in soiids

In section 1.2 it was shown how it is possible to discuss heat conduction
in solids in terms of a single coefficient, the thermal conductivity, and in
section 1.3 equations were derived whose solutions describe the
temperature distribution in a solid. Subsequently these equations will be
applied in analysing the experimental methods used to determiine the
conductivity. In this section a survey is given of the physical processes
involved in heat conduction.

The simplest material to consider is the perfect electrical insulator.
Many materials of both technical and scientific interest can be regarded as
approximating to this. To understand the transport of heat in such a
material one considers the form in which the internal energy exists. This
is almost. exclusively in the lattice vibrations, as the thermal motion of the
atoms or ions is usually called. If a model of the solid is used where the
atoms are coupled to their neighbours by forces, which, although of a
quantum-mechanical nature, can be treated classically, the resultant -
expressions for internal energy and specific heat are in good agreement
with experiment at both low, intermediate, and high temperatures. Even
the Debye model, in which the lattice vibrations are treated as sound
waves, gives quite an adequate picture for many purposes. d

One of the most important features of models of this kind is that the
vibrations are analysed into normal modes obeying harmonic oscillator
equations. These harmonic oscillators are found to possess energy only in
discrete integer units of Ay = M, where v is the oscillator frequency,

w (= 2#») is the angular frequency, & is Planck’s constant, and # = h/27.
To be precise, the energy of the oscillator must be of the form

&, =(nt+imw,

(1.8)

K 3
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vsbere n is an integer, and the half gives the inaccessible, but detectable,
‘zero point’ energy. These quanta R are called ‘phonons’ in the solid by
analogy with the photons of electromagnetic radiation. It is this
quantisation which causes the rapid decrease in specific heat at low
temperatures. From many points of view these phonons can be regarded
as particles and the solid as a gas of such particles. Then heat conduction
appears as a diffusion of phonons from a hotter region where they are
more numerous to a colder region where they are less so. The alternative
classical piciure requires consideration of the varying amplitudes of lattice
waves in hotter and cclder regions and is considerably less vivid,

It may be shown that in an infinite perfect single crystal where the
lattice vibrations are strictly harmonic there is no resistance to the flow of
phonons. Departure from strict harmonicity gives rise to collisions between
phonons and a thermal resistivity, 1/A, proportional to absolute tempersature.
This is characteristic of the.high-temperature behaviour of insulators.

Phonon scattering due to-the presence of impurity atoms and other
point defects of the crystal lattice becomes effective at fairly low
temperatures. Finally, at very low temperatures the main mechanism of
phonon scattering is collision with the surface of the ctystal or with grain
boundaries insidc a polycrystalline insulator. This gives rise to a decrease
of thermal conductivity as 73 at low temperatures. It can be seen that
vith A o T7! at high temperatures, and A « T3 at low temperatures, there
5 & maximus value of X at some intermediate temperature. This kind of
behaviour chz:acterises insulators with fairly good crystal perfection,
‘hough not ceiamics or glasses.

From the point of view of analysis of the experimental data the easiest
mterials to understand are the pure metals. It was discovered as early as
1853 that the ratio of thermal to electrical conductivity was very similar
for a large nuriber of metals, and it was later shown that this ‘Wiedemann-~
rranz ratio’ was proportional to absolute temperature as long as the
temperature was not too low. This clearly indicated that the mechanism
of heat transport was the motion of the free electrons in the metal.
However, this conclusion left two questions unanswered. The first was
why this large number of free electrons did not contribute to the specific
rzat. This problem was solved by the application of quantum mechanics
to the statistics of electrons. The second was what had happened to the
phonon (lattice vibrational) thermal conductivity, which in many insulators
is nearly as large as the thermal conductivity characteristic of pure metals.
The answer to this was to be found in the scattering of phonons by electrons,
an answer confirmed by the detection of a lattice contribution to the
thermal conductivity in some alloys where the electrical conductivity was
low, and most unambiguously by experiments on superconductors where,
owing to the effective removal of the electrons into a state in which both
interaction with phonons and heat transport were impossible, a large
lattice thermal conductivity appears.
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For most materials it is unnecessary to consider heat conduction
mechanisms other than those due to electrons and phonons. As an
example where one has to go beyond this, there are certain semiconductors
where electrical conduction is due to electrons and positive ‘holes’ in
nearly equal numbers, and here the energy of creating the electron-hole
pair contributes to the heat transport.

1.5 General considerations in the measurement of thermal conductivity
The methods of measuring thermal conductivity can be divided into two
categories, static and dynamic, depending on whether the temperature
distribution within the sample is time dependent. Static measurements
involve the use of equation (1.1) and it is necessary to determine the heat
current density and the temperature gradient along the normal to the
isothermal surface. In contrast to the steady state measurements, dynamic
methods involve the complete differential heat flow equation (1.4). In
general these methods determine the diffusivity and require measurement
of the time for a thermal disturbance to propagate a known distance. The
specific heat and density must be known in order to obtain the thermal
conductivity, although in some dynamic methods the specific heat can be
determined as well as the diffusivity.

Both steady state and dynamic methods require the solution of the
appropriate equation for the particular geometry of the sample, heat
source, and sink. The simple solutions involve isothermals which are
either plane, cylindrical, or spherical surfaces. It is usually an experimental
problem to maintain the isothermals of the shape required for a particular
mathematical solution, because of heat transfer from the sample to the
surrounding medium.

The stationary state condition assists in the achievement of a high
degree of precision of measurement, although the total time involved in
achieving equilibrium can be a very lengthy process if the conductivity is
low. The long time constant also makes steady state methods undesirable
at very high temperatures. Dynamic methods, in general, do not give as
high a precision as static ones although modern instrumentation is
improving enormously the precision attainable with this type of method.
There has been a tremendous upsurge of interest in various dynamic
techniques in the past few years with the desire to obtain data rapidly,
particularly at high temperatures. .

The choice of method of measurement depends upon the order of
magnitude of the thermal conductivity to be evaluated, on the temperature
range, and on the sample size. The latter may depend on the uniformity
Or macroscopic nature of the material; it may also be restricted by
limitations of a manufacturing process. v

The thermal conductivity of solids ranges at most over some five orders
of magnitude, varying at room temperature from about 4 W cm™! K™! for
copper or silver to 107* W cm™ K! for microporous materials such as
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plastic foams. For single-phase solids the spread is ohly over some three
orders—the materials of very low conductivity are those of short range
order, such as the polymers and glasses, and multiphase solids with various
degrees of porosity. It is not even possible to make the generalisation
that metals are better conductors of heat than nonmetals. At room
temperature diamond is the best known conductor and, depending upon
the quality of the gem, can have a conductivity five times greater than
that of copper. Conduction in pyrolytic graphite parallel to the layer
planes is of the same order of magnitude as in diamond and is higher than
that of copper up to 1200 K. The conduction perpendicular to the layer
planes, however, is lower by a factor of about 200.

Although the thermal conductivity of both pure metals and nonmetallic
crystals increases with decreasing temperature, close to 0 K many
comparatively common electrical insulators conduct heat better than, or
certainly as well as, metals. At high temperatures there is a tendency for
metals to conduct better than nonmetals; however the range of values
steadily diminishes and at 2000 K extends only over two orders of
magnitude.

As a result of the comparatively small range of thermal conductivities
there is no thermal insulator in the sense of an electrical insulator.
Consequently the problem common to all methods of measurement is the
attainment of the conditions of heat flow required by the mathematical
solutions; moreover the degree of difficulty tends to increase with
increasing temperature. -As a note of caution it should be remembered
that, if these conditions are not met experimentally, then the data
acquired are meaningless.

A glance at the wealth of thermal conductivity data published by the
Thermophysical Properties Research Centre (TPRC) at Purdue University
(Touloukian, 1970) shows a disparity in data probably greater than that
of any other physical property. The disagreement is more than a few per
cent, may be as high as an order of magnitude, and is in general far larger
than the claimed precision of the data. Some differences can be expected
as no two samples can be completely identical. However, as it is shown in
Chapter 6, for homogeneous materials these differences should be small
{except at very low temperatures) and certainly smaller than the literature
suggests. Much of the diversity is due to a lack of accuracy in the data,
resulting from failure to meet experimentally the required conditions of
heat flow, and in this respect TPRC has critically appraised much of the
data and published recommended curves. However, this is an age of new
materials and, since prediction of thermal conductivity is extremely
difficult, it is a property which must be investigated experimentally. In
order to make new data more reliable than those of the past, apparatus
for the measurement of thermal conductivity or diffusivity should be
thoroughly checked for systematic errors. Although these can be difficult
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to locate, particularly without experience, they can sometimes be found
by repeating measurements under different experimental conditions,
changing for example sample size or heat flux. The apparatus should
finally be checked by measuring one or more materials of known thermal
conductivity. There is no single reference material, but the standard or
standards chosen to ‘check’.a particular apparatus should cover the full
range of conductivities for which the apparatus is to be used. High-purity
copper, Armco iron, various nickel alloys, and particular glasses are
commonly used. For work of the highest precision a bank of reference
standards is being established at the National Bureau of Standards in
Washington from whom details of stock material can be obtained. Over
the past few years an international cooperative measuring programme has
examined, amongst other thermal properties, the thermal conductivity
and diffusivity of a number of metals and nonmetals above room
temperature. The report by Fitzer (1973) serves as a useful guide to the
choice of reference materials, some of which are readily available.

When reporting thermal conductivity data as much information as
possible should be given in order to characterise the material. This should
include the source of the material, its chemical analysis, fabrication
treatment, density, grain size, crystal structure, and direction of heat flow,
together with details of shape, size, and orientation of any pores or
additional phases in heterogeneous materials. For electrical conductors
the electrical conductivity, Hall coefficient, and thermoelectric power
should be specified as functions of temperature, as these are extremely.
useful aids to material classification.

In the following two chapters the principles involved in various steady
state and dynamic methods of measurement are discussed critically without
experimental detail.

1.6 A note on units
The situation as regards the units in which thermal conductivity is measured
has for some time been very confused. Until recently we have had one
system usuaily empldyed by engineers in English-speaking countries and
two systems employed by scientists and Continental engineers. A further
system based on SI Units has now appeared and will have legal force in
Britain in the near future.

The first system referred to has as its basis the British thermal unit
(Btu), the hour, the foot, and the degree Fahrenheit. Thus the units of
thermal conductivity in this system are

Btu h™? ft™! °F~,

The two systems used by scientists differ in that one uses caleries and
the othér joules (or ergs). In the first of these we have as units of thermal
conductivity

cal s'em™' K7,

Lot

07

A
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whilst in the second we have
Wem™! K™Y,

where K stands for the kelvin, defined as the fraction 1/273-16 of the
thermodynamic temperature of the triple point of water [this symbol is
used both for thermodynamic temperature (in place of °K) and for
temperature interval (in place of deg, °C, °K)]. The SI system is based
on the second system, but insists on metres rather than centimetres, so
the units are

Wmt Kl

There seens to us no excuse for persisting with the Btu h™! ft™! °F~!
system or the calorie-based metric system. At present inconvenience is
caused by the existence of great quantities of data expressed in units of
these systems, but to continue using them will only increase these
difficulties for the future. The two remaining systems only differ by a
factor of one hundred and can easily be used in harness. Except in
building applications the metre seems rather a large unit to employ.
Furthermore most current scientific work seems to use the W cm™! K™}
system and for these two reasons we shall use these units. Similarly
we shall generally use cm? s™! for the units of diffusivity. To assist in
the use of the literature a table for converting the systems of units one
to another is given in the Appendix.

References

Fitzer, E., 1973, AGARD Advisory Report No.606, March.

Touloukian, Y. S. (Ed.), 1970, Thermophysical Properties of Matter. The
Thermophysical Properties Research Centre Data Series, volumes 1 and 2
(IF1/Plenum Press, New York).

11



Static methods of measuring thermal conductivity

2.1 Introduction

In static methods the thermal conductivity is obtained from measurements
of a temperature gradient together with the heat flux into or out of the
sample in accordance with equation (1.1}.

In its simplest form the sample is a cylinder in which the heat flow is
parallel to the axis and the isothermals are planes perpendicular to the
axis. This is the basis of the so-called linear or axial flow method. Owing
to the inevitability of heat losses it is difficult to ensure that the
temperature gradient remains normal to the cross-sectional area. Moreover
the problems of maintaining uniform isothermals are enhanced as the
temperature of measurement is increased.

As an alternative, a sample which surrounds a heat source is used. This
could be a hollow sphere with a central spherical heater or a long cylinder
with the heater along the axis. In these cases the heat flow is radial and
the isothermals are either spheres or infinite cylinders. This is the basis of
the radial flow method. ’

2.2 Linear flow method

2.2.1 General principle

If all the heat supplied by the electric heater at the rate & is conducted
along a rod of uniform cross-sectional area 4 with distance L between
thermometers, as shown in figure 2.1, then at any point

o 2L
=2 @.n
and the mean conductivity A between the temperatures Tyand T; is
A= AL ®L L
AAT = TAAT T AT-T) 2.2

This assumes that the heat losses from the periphery of the sample and
along the thermometers are negligible. In order to ensure that the heat
flow is linear between the thermometers, they should not be closer to the
heater or the heat sink than a length equal to the sample diameter.

T L
L— [ —aq
cylindrical samp
heater heat sink

Figure 2.1. Schematic diagram for measurement of thermal conductivity under steady-
state linear heat flow.
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In general, measurement of the heat flow rate ® and of the cross-
sectional area A presents no problem. However, it is necessary to pay
great attention to the measurement of the temperature difference (7;— T;)
along the length L. Since thermal conductivity varies with temperature,
quite markedly in many cases, the temperature difference should be small
so that a meaningful average temperature can be assigned to the
measurement. The thermometers, which if possible should fit snugly to a
reasonable depth in holes in the sample, should be as small in cross-section
as practicable, since ideally the temperature at a point is required and the
distance between the two points must be measured precisely. Since the
accuracy is dependent upon the measurement of a difference in temperature
of only a few degrees, the precision of absolute temperature measurement
must be high. Alternatively, if direct measurement of the temperature
difference can be made, the absolute value of either 7; or T;, from which
the average temperature can be assigned, can be determined with less
precision. For this reason thermocouples are ideal thermometers, since the
temperature difference can be measured by connecting the two
thermocouples back to back. It is of course essential to maintain the cold
junctions of the thermocouples at the same temperature, preferably by
immersing the junctions in a suitable constant-temperature environment
of high thermgl mass, so that any small fluctuations in temperature have a
long time constant compared with the time necessary to make the
measurements. By using suitable switches, free from spurious thermoelectric
effects, the voltage output fzom each thermocouple can be measured
directly as well as the differential e.m.f. However, at low temperatures
the sensitivity of thermocouples becomes comparable to, or less than that
of, resistance thermometers, so that it becomes necessary to make precise
measurements of each absolute temperature. It must also be remembered
that heat flow from, or to, the specimen will be conducted by the
thermometer leads, which should be kept as fine as possible.

‘The choice of specimen geometry is controlled mainly by the conductivity
value to be measured, by the sensitivity of the thermometers, and by
practicable values of ®. The ratio of length to area L/A must be large
enough to ensure that AT is sufficiently large to measure without needing
an enormously large heat flux. Lateral heat losses are proportional to the
surface area, so that to minimise them a short sample with a large cross-
section is required. Measurement of the temperature gradient then
becomes difficult since the presence of the thermometers significantly
alters the heat flow pattern. This can be overcome by attaching each end
of the sample to a good conducting block in which the temperature is
measured; the measured temperature gradient is then likely to contain
spurious gradients- across the contact between the sample and block, the
magnitude of which will be more significant the greater the therraal
conductivity being measured. From this point of view the arrangement



