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Preface

Today no molecular biologist knows all the important facts about the gene. This
was not the case in 1965 when the first edition of Molecular Biology of the Gene
appeared. Then there were few practicing molecular biologists and not too many
facts to learn. So what we knew about DNA and RNA could easily be explained to
beginning college students. That year.the final codons of the genetic code were
being assigned, and everyone at the forefront of research could regularly assembie
in the modest lecture hall at Cold Spring Harbor. Five years later, when the second
edition appeared, our numbers were rising rapidly.. Yet, despite the emerging pop-
ularity of molecular biology, it was still quite uncertain if the future would be as
intellectually meaningful as the years just after the discovery of the double helix.
The isolation of the first repressors and the demonstration that they bind specifi-
cally to control sequences in DNA seemed to some pioneers in DNA research to
mark the end of the years of germinal discovery. With no means to isolate the geres
of any higher organism, much less any way to know their nucleotide sequences,
any pathway to understanding how genes guide the differentiation events that give
rise to multicellular organisms seemed impossibly remote.

Happily, these worries did not last long. By the time the third edition of Molecular
Biology of the Gene was published (1976), recombinant DNA procedures had given
us the power to clone genes. Moreover, there was reason to believe that highly
reliable methods to rapidly sequencé long strétches of DNA would soon be avail-
_ able. As this new era of molecular biology ‘began, however, there initially was

widely voiced concerit that recombinant DNA procedures might generate danger-
ous and pathogenic new organisms. It was not unfil after much deliberation that in
'1977 the cloning of the genes of higher-otganisms began in eamnest. The third -
- edition could barely mention the potential of recombinant DNA, and of necessity -
its brief discussions of how genes function in eucaryotic organisms were tentative,
and sometimes quite speculative. : - i _ ER :

It is only in this fourth edition that we see the extraordinary fruits of the recombi-
nant DNA revolution. Hardly any contemporary experiment on gene structure or
function is done today without recourse to ever more powerful methods for cloning
and sequencing genes: As a result, we are barraged daily by arresting new facts of
such importance that we seldom can relax long-enough to take comfort in the
accomplishments of the immediate past. The science described in this edition is by
any measure an extraordinary example of human achievement. '

Because of the immense breadth of today’s research on the gene, none of us can

~ speak with real authority except in those areas where our own research efforts are

.concentrated. Thus it was clear from the first discussions about the fourth edition
that writing it would be beyond the capability of any one scientist who also had
other major responsibilities. So the task of preparing this edition has required sev-
eral authors. We also realized that it would be a formidable undertaking to keep the
book within a manageable length; even by adopting a larger page format, we saw
no way not to exceed a thousand pages. DNA can no longer be portrayed with the
- grandeur it deserves in a handy volume that would be pleasant to carry across a
campus. Although this edition could have been shortened by eliminating the intro-
ductory material found in the first eight chapters, we never seriously considered
this alternative. To do so would remove the background material that so many
readers of previous editions have found valuable, and which has let many novices
in molecular biology use this book as their first real introduction to gene structure
and function. ‘ '

" Now that we are at last finished, we find that the book is even longer than we
had planned. In part this happened because we are two years behind schedule, and
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150 additional pages were needed to accommodate the immediate past. We also
seriously underestimated how many words and illustrations would be required to

describe the extraordinary variety of gene structures and functions that underlie the -

complexity of eucaryotic cells. We therefore have made the decision to split the
fourth edition into two volumes. In the first volume we cover the general principles
that govern the structure and function of both procaryotic and eucaryotic genes. It
can be used as the sole text for a one-term course in molecular biology at the under-
graduate level. The second volume concentrates on those specialized aspects of the
gene that underlie inulticellular existence, and it concludes with a chapter on the
evolution of DNA. In this edition the second volume is appreciably smaller than.the

first. This will not be true of subsequent editions. Now that it is at last possible to’

study differentiation at the DNA level, we can easily foresee the time when, in fact,
more than one volume will be required for even an introductory description of how
genes are organized and expressed in the specialized cells of multicellular orga-
nisms. :

W2 hope that this new edition, like its predecessors, will be found to be a highly -

suitable text for teaching at the undergraduate level, and that it also will provide all
molecular biologists with an easy reference to the basic facts about genes: We have
shown sections of the manuscripts to a variety of colleagues who are listed as
reviewers. Their comments have been taken seriously, and we hope that the final
manuscript faithfully reflects their expertise. Any mistakes that remain are, of
course, our responsibility. Those who have made major contributions by writing or
rewriting large sections of the text are Thomas. Steitz (Chapter 6), Ira Herskowitz
(Chapters 18 and 19), John Coffin (Chapter 24), and .Brent Cochran (Chapter 25).
Their generous contributions of specialized knowledge has vastly upgraded those
portions of the book. In addition, John Coffin, Scott Powers, Haruo Saito, Lisa
Steiner, and Parmjit Jat helped with the references for various chapters in
Volume 1I. The excellent index was prépared by Maija Hinkle.

Equally important have been the efforts at Cold Spring Harbor of Andrea Steph-
~ enson, whose competent secretarial assistance helped coordinate our diverse la-

bors, and Susan Scheib, whose intelligent attention to detail kept the manuscript - '

and the galleys moving on a forward course. We also wish to acknowledge the
pleasure of working with the staff of The Benjamir/Cummings Publishing Com-
pany, including Editor-in-Chief Jim Behnke and Production Supervisors Karen'
Gulliver and Betsy Dilernia. In particular we wish to thank Jane Gillen, who has
functioned as the responsible editor during the entire writing and production of the
book. An especially satisfying aspect of the process has been seeing rough draw-

ings come alive through the efforts of the talented illustrator Georg Klatt, who has

been responsible for the vast majority of the hundreds of new drawings prepared
for this edition, and whose commitment and interest h.ive greatly improved the
book. And finally we gratefully acknowledge the strong support of cur families
throughout this endeavor, which was of course far more difficult and protracted
than we ever foresaw. ’ ' :

James D. Watson
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The Molecular Biology
of Development

Embryology began as a descriptive science, growing out of the fasci-
nation that biologists experienced as they watched the remarkable
events of early development in organisms as diverse as the fruit fly,
the sea urchin, and the mouse. For example, the female frog deposits
her eggs on the bottom of a pond, and the male frog fertilizes them.
Shortly thereafter, tiny tadpoles can be seen freely swimming about,
searching for food and shelter, completely on their own in a very
large (and often dangerous) world. Viewed under the microscope,
both the huge, nearly spherical frog egg and the much smaller, flagel-
lated sperm have a characteristic morphology, but neither of these
germ cells resembles the tadpole or the adult frog in any obvious way.
How, then, do these two highly specialized germ cells fuse and de-
velop so quickly into an indepéndent organism with a functional di-
gestive tract and a nervous system capable of coordinating rapid
swimming motions? We know that the instructions for how the egg
develops into an adult are written in the linear sequence of bases
along the DNA of the germ cells. However, this genetic information
would be useless if the fertilized egg could not express the informa-
tion in an orderly fashion. During development, gene expression
must therefore be regulated both in space (an adult fly must not have
aleg in the middle of its forehead) and in time (the larval fly must not
prematurely develop wings). In addition, it is not sufficient for the
DNA within each cell to be properly expressed; the cells must also
interact with one another so as to build complicated multicellular
structures such as wings and legs. Embryologists search for the gen-
eral principles of development by concentrating on the early develop-
mental stages in the life of the organism when cellular differentiation
and interaction are most apparent.

The Heart of Embryology Is the
Problem of Cell Differentiation

All higher plants and animals are constructed from a large variety of
cell types (e.g., nerve cells, muscle cells, thyroid cells, and blood
cells) that must arise in an exquisitely coordinated way. In some organ-
isms, specialization begins with the first few cell divisions after fertil-
ization. In other organisms, a large number of divisions occur before
any progeny cell is fixed in its fate. Regardless of the exact time that
differentiation occurs, however, it always results in the transforma-
tion of the parental cell into a large number of morphologically differ-
ent progeny cell types.

747
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748 ' The Molecular Biology of Development

Classical developmental biologists examined differentiation from
three viewpoints. First, what are the external (and internal) influ-
ences acting on the original undifferentiated cell that might initiate a
chain of events resulting in two progeny cells of different constitu-
tion? Sometimes, asymmetrically acting external forces are easy to
perceive. For example, gravity forces the yolk of an amphibian egg to
the bottom. Thus, after the first few cell divisions subdivide the fertil-
ized egg, some of the embryonic cells have more yolk than others.

Second, are the molecular differences between differentiated cells
extreme, or does morphological differentiation arise from the pres-
ence of only a few unique proteins in especially large numbers? We
now know that each type of differentiated cell contains many molecu-
lar species peculiar to that cell type. Thus, a complete description of
differentiation at the molecular level would necessarily be a most for-
midable task, and would not necessarily help us to understand the
essential mechanisms responsible for differentiation.

Third, are the various changes that bring about differentiation irre-
versible, and if so, how they are perpetuated in a heritable fashion
from one cell to the next? As we shall see, these are not easy ques-
tions to answer. Whether differentiation is reversible or irreversible
depends not only on which cell type we are talking about, and in

" which organism, but also to a surprising extent on the precise details

of the experiment. Moreover, we are only just now beginning to have

" vague hints of the mechanisms by which cells can maintain or change

their state of differentiation.
Until quite recently, embryology was largely studied as an isolated
subject, apart from modern genetic or biochemical ideas. Now, how-

. ever, . -“that the morphological tools of the classical

¥ ot give satisfying answers by themselves. Instead,
fundamental answers require analysis at the molecular

as'in genetics,

" Jevel. Thus, just as recent methodological advances have made cer-
" tain aspects of biochemistry and genetics indistinguishable, so em-
. ‘bryologyis being transformed by progress in biochemistry and genet-
ics-brought about by the recombinant DNA revolution (Chapter 19).

A Hlerarchy of Genes Controls Development %3

when différentiation involves so many changes in the protein compo-
sition of the c#ll (together with parallel changes in key metabolic path-
ways arid:intermediates, as well as in RNA, lipid, polysaccharide,

How',?'ﬂie'ty can we understand development at the molecular level

~ and perhaps even ionic composition)? If each of the many hundreds

of gene products that distinguish a liver cell from a muscle cell had to
be studied in minute detail before we could begin to understand the

. molecular causes of development, the situation would be virtually

hopeless. However, we shall see that for many, and perhaps all, de-

. veloping organisms (both procaryotic and eucaryotic), the gene prod-

ucts responsible for development can be arranged in a hierarchy, with
some genes controlling the expression of other genes. This conclusion

- should not really surprise us. For example, we have already seen that

the A CI protein (repressor) controls the developmental decision to
grow lytically or to lysogenize (see Figure 17-16). Similarly, the MAT
locus in yeast controls the expression of a large array of genes respon-
sible for the differences between the two mating types and the diploid
(see Figure 18-31). These are only a few obvious examples. Thus, the
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many hundreds of gene products that distinguish one mammalian
cell from another are not all equal; some are more important than
others, because they control the initial decisions to differentiate along
one developmental pathway or another. The goal of molecular biolo-
gists studying development is therefore to discover which genes con-
trol the expression of other genes.

Traditionally, one of the problems that has confounded and con-
fused the molecular study of development is that cells usually become ~
“committed” or “determined” to differentiate long before any actual
morphological differentiation is apparent. For example, stem cells in
the bone marrow of mammals give rise to at least two different kinds
of progenitor cells—those that proliferate and'differentiate into ox-
ygen-carrying red blood cells and those that proliferate and differenti-
ate into antibody-producing lymphocytes. Yet, in the very early
stages of proliferation, the two kinds of progenitor cells (although
committed to different fates) are difficult to distinguish. Once we real- ‘ >
ize that genes are arranged in a hierarchy, it becomes clear that in
most cases, commitment or determination corresponds to the expres-
sion of a controlling gene, while differentiation reflects the myriad
molecular consequences of that initial developmental decision.

N

Necessity of Finding Good Model
Systems for Studying Differentiation

We have already noted (Chapter 20) that the relative amount of
genomic DNA increases by a factor of approximately 800 from E. coli
to a mammalian cell, but not all of this additional DNA represents a
real increase in genetic complexity. Satellite sequences, moderately
repeated DNA sequence families, and introns-account for much of the
genome in higher cells. Nonetheless, any particular mammalian cell
type (say, liver) does contain a much larger number of distinct protein
species than does E. coli. In addition, although all of the several hun- )
dred different cell types in the body share a core of “housekeeping” SR
proteins that are necessary for metabolism and replication, different - . ' :
mammalian cell types (say, liver and muscle) express very different
subsets of the total protein-coding capacity of the genome.

Faced with such biological complexity, how are we to choose the
best organism for studying selected aspects of differentiation? Histor-
ically, rapid progress in understanding E. coli was due primarily to
the invention of powerful genetic techniques for dissecting compli-
cated biochemical events; these experimental advantages, in turn, at-
tracted the concentrated efforts of many scientists. Similarly, with
only a few important exceptions, molecular biologists have tended to
concentrate on organisms where relatively powerful genetic tech-
niques can be brought to bear on otherwise intractable developmental
problems. Thus, even if we are ultimately curious about human biol-
ogy, common sense may direct us to work on a simpler 6r more con-
venient organism such as bakers’ yeast (Saccharomyces cerevisiae), the
fruit fly (Drosophila melanogaster), the soil nematode worm (Caenor-
" habditis elegans), or the laboratory mouse (Mus musculus). However, it
is important to keep in mind that biologists have always been experi-
mental opportunists, studying whatever systems promised to yield
interesting results most readily, and today’s molecular biologists are
no different. Some organisms, such as the African clawed toad (Xeno-
pus laevis) and the cellular slime mold ( Dictyostelium discoideum), have



