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Foreword

In the form in which it is presented in this book, pattern recog. .tion was
born at the end of the 1960s at the same time as the powerful computers now
described as third generation machines. The arrival of these machines made it
possible to experiment with the information (the data) provided by instruments in
many fields of observation: in visual images, in spoken words, in the fields of .
physics, medigine, economics, linguistics, etc. A new field of observation and
study was transferred from philosophy to experimental science. This is a general
and ¢rucial phenomenon in the history of Man’s efforts to understand Nature:
the telescope gave birth to astronomy, and metallurgical, chemical, electrical and *
vacuum techniques gave birth to physics. There is some paradox in the fact that
the computer, designed for commercial accounting and scientific computation,
gave birth to pattern recognition and artificial intelligence.

The scope of pattern recognition is very wide indeed. About a thousand
scientific publications appear each year and the burgeoning subject seems to be
devoid of all order. There is much repetition, often concealed by different modes
of expression, showing the variety of cultural origins of the specialists. A
-newcomer to the field is thus disoriented by the number of papers, approaches
and special terms. Textbooks are necessary to present the field from a unified
point of view. This book is an effort along that tutorial line. Qur aim is to present
pattern recognition topics in a logical order, around some ideas which, to us,
seem the best threads to follow in order to grasp the unity of the field of
algorithmic pattern recognition:

° compﬁtational complexity;
e the properties of representation spaces;
e the properties of interpretation spaces.

- For the pure mathematician, pattern recognition is a trivial problem which
can be expressed formally as follows. Let X be a representation space, preferably a
‘nice’ topological space; and let Q, the interpretation space, be a finite set of
names. A recognition or identification is a mapping €:X — Q to which certain
properties are ascribed and from which elegant theorems can be deduced.

This, however, is not where e problem lies: in practice, the question is one
of constructing &, i.e. of providing operators or programs which, givenany X e X,
enable us to decide automatically onto which w € Q the element X is mapped.
An’extehded definition of &, to be beld in full in memory, is out of the )
question, even for small-scale problems, because here we come up against the
“problem of computational complexity. In the search for usable operators, pattern
recognition is continually confronted with problems of information complexity;
SO many pattern recognition problems are exponential that we are constantly
obliged to adopt less than optimal, polynomial solutions. Pattern recognition is

1



2 PATTERNS AND OPERATORS

first and foremost a battle against complexity. For this reason, the first chapter of
this book recapitulates the necessary results of complexity theory: they are the
‘safety barriers’ essential to anyone practising the subject. ‘

The other guiding thread seems to us to be the semantics of the general
pattern recognition problem, which varies according to the question under
consideration. Is there in fact a general, universally applicabie method for
constructing a pattern recognition operator? It was thought in the 1950s, when
self-organizing or automatic learning systems based on perceptrons were
flourishing, that there might be such a generai method. However, just as there is
no computer program which can decide whether or not any given program will
halt within a finite number of steps, there is no program which can construct an
operator able to solve any given pattern recognition problem.

We must therefore treat each problem in a specific manner and look for any
items of information that will enable us to construct the required operators. Our
view is that information is to be found in the properties of

e the representation space,
e the interpretation space or spaces.

The introductory survey is followed by a chapter on representation and
interpretation, dealing with general methods of presentation, after which we turn
to signal processing—a subject which needs to be understood by anyone working
in pattern recognition. The final chapters deal with the various possible
representation spaces: finite, n-ordinal and Euclidean. In this book, we have
therefore limited ourselves to the treatment of representation spaces, which may
be regarded as the most classical part of the subject; the use of the properties of
the interpretation space will be dealt with in a second volume.

In order to counteract. the effects of complexity, a pattern recognition
operation is broken down into a number of successive steps. In this volume, we
shall consider the techniques used at the lowest levels in these processes, those
closest to the physical sensors. Those used at the higher levels are similar to the
methods of artificial intelligence, although in artificial intelligence there is a
tendency to deal with ‘toy’ problems whereas the pattern recognition expert is
confronted with ‘real’ problems —the recognition of speech, images and written
characters—and has to attack them as a physicist or engineer rather than as a
theoretician. Our ‘pure’ colleagues may find our field of pattern recognition
research; Somewhat confused and perhaps not very glamorous. We recommend
that they tackle some of these real problems: they will find it a rather frustrating
experience because, with our so-called powerful machines, we are far from doing
as well as living creatures with their senses of sight and hearing. However, they
will also find it a rich source of theoretical problems, as physics was for the
mathematicians of the 19th century, for men such as Poincaré.

Thus, in this first volume we aim to give a structured account of a broad field
which is in a state of rapid expansion; we also attempt to classify the various
categorization systems which have been proposed and to bring together
algorithmic techniques which differ, not in the syntax of the algorithins



FOREWORD 3

themselves, but in the discussion their authors provide to accompany them. In
short, it should be regarded as a textbook for postgraduate and research level
studies. .
It is the reward of a university professor and leader of a research team to be
surrounded by talented young people and to witness the development of their
skills. It is for them that I have taken the time to write this book, despite the many
tasks calling for my attention; here, they will find echoes of their own excellent
work, and it is to them that I dedicate the book.

I wish to offer my sincere thanks to Dr J. Howlett and D. Beeson for a careful
translation and review of this work.

J.C. Simon
Bonas, 1984






Some Bakle concep:’l.‘ f
algorlthmac process lﬁg

The use’ of computers, and therefore of programs, for !p, ecognition of
patterns requires a good knowledge of the fandamental concepts of it

science. It seems useful, therefore, before embarking on the s 1bject pro
ashort survey of the ideas that have emerged from basic research, Wh st many of
thése concepts, e.g. those of procedure, aldonthm and coinputn!idi, go back to
antiquity, recent research in information science has made it potdble both to
extend them'and to make them more precxse

1.1. Definitions

An information processing machine (digital or numerical) or oomputer isa
physical system comprising

(1) a set of registers or memory cells in which coded rcprosentations of
information can be stored,

(2) a set of processors or automata whmh can perform opornﬂbm on this
information and

(3) input and output devices for communication with the outside world.

A register or memory cell consists of a seri¢s of binary flipflops; each able to
exist in either of two states which are conventionally represented byﬁiqu 1. A set
of n such elements forms a register of length n, or an n-register, for which there-are
2" possible states. As long as it has been properly programmed, a ﬂ’owﬂor can
perform any operation which changes the state of a registery | 1M

Loosely, we can define bl

o a procedure as a list of tasks to be performed in the order glvén e.g. the
checklist to be gone through before an aeroplane is allowed to‘take off;

e an algorithm as a list of operational rules for performing a coniputatlon it
is thus a computational procedure, e.g. the algorithm for multiplicatxon

In information science, no distinction is made between algorithms and
procedures, and in fact all operations are performed on the machine registers. As
we shall see, a state represented by a series of 0s and 1s can be interpreted in many
different ways. If the interpretation (the fype of the representation) has the
properties of a number (integer, real or other), then we are dealing with numerical
computation, but it is more often the case that the interpretation is in terms of the
elements, i.e. symbols, of a set. The proportion of computer applications dealing

5



6 PATTERNS AND OPERATORS

with numerical computation 4s now in continual decline, in spite of the fact that
<hese machines were originally designed as ‘number crunchers’. The processing of
strings of characters, or ‘symbois’ in the sense that we shall give the term in the
next section, has been their main activity for quite a while. The discussion which
follows will make it easier to understand why the computer is a ‘universal’
machine for symbol manipulation. -

Several definitions of algorithms or finite procedures are based on methods
which differ greatly but which all make use of closure operations, formal systems
for symbol manipulation, and computing devices; such methods have been
developed by Church, Gédel, Herbrand, Kleene, Markov, Post, Turing and
others. All the definitions proposed turn out to be equivalent, in the sense that
they all relate to the same class,of functions: partial recursive functions. The
Church-Turing theorem states that these functions form the class of computable
Junctions; a rigorous and detailed account is given by Matchey and Young (1978)
for example.

1.1.1. Primitive recursive and partial recursive functions

The following is an algebraic definition of a computable function, by closure
operation on a set of words'. ,

Let A = (a,,4a,,...,a,) be a k-alphabet (i.e. an alphabet of k letters) and A*
the infinite set of words x, including the empty word ¢, that can be formed with the
letters of A. With domain (4*)" and values in 4*, we have ghe following
clementary functions:

zero Z(x)=¢
Jjth successor  §(x) = xa,
projection  P*

A primitive recursive fonction is constructed from these elementary functions by
using the composition and primitive recursion operations.

However, it can be shown, by the use of Cantor’s diagvinal argument, that
~ certain computable functions are not primitive recursive; in practice, this means
that not all algorithms will lead to a result for all values of their arguments—they
can loop. Partial recursive functions are so called because they are not defined for
all arguments in their domain and are therefore, in a sense, indeterminate. Such
functions are defined by recursive minimization instead of by the primitive
recursive operation, but otherwise they are the same as primitive recursive
functions. Every primitive recursive function is thus a partial recursive function
defined for all arguments in its domain.

! The termd element, symbol, character and word will be used more or less interchangeably
for members of a set which we call an alphabet in the case of characters or letters and a
vocabulary in the case of words. ' '
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1.1.2. Random access machines

A random access machine is a computing device with a potentially infinite
memory, meaning that the number of memory cells is as large as required. Any
word in A* can be written into the memory and the machine can execute seven
instructions as follows, where Y and Z are addresses in the memory:

app; Y append a; to the right of the word in cell Y
del Y delete the first letter of the word in Y
nul Y replace the word in Y by the null (empty) word ¢
YZ copy into Y the word in Z, leaving Z unchanged
skip X skip the instruction labelled X

" Y skip; X conditional skip, executed if the first letter of Y is a ;5
stop do nothing '

A program for such a machine is a finite sequence of instructions; it stops if it
reaches a ‘stop’ instruction. :

1.1.3, 'Turing machines

A Turing machine is an automaton with a potentially infinite linear tape
which can be moved any number of steps in either direction and has a read and/or
write head for tape reading or writing. The characters written on the tape are the
letters of a finite alphabet A, together with the ‘space’ character. The machine has
p internal states allowing it to control read and write operations, e.g. if when in
state i character a, is read on the tape, replace this by a,, move the tape one space
in one direction (say; to the right) and enter state m’.

1.1.4. Markov’s algorithms

Markov’s algorithms are procedures for the formal manipulation of
symbols, expressing the rules for writing formal grammars. A Markov algorithm
is a finite ordered sequence of production rules, i.e. of rules for deriving a word ¢
from a word p, both belonging to 4*. Certain production rules are ferminal,
meaning that nothing further can be derived from them. A partial recursive
function is computable in the Markov sense if it can be computéd by a Markov
algorithm.

1.1.5. Theorem: identity of classes of functions
The theorem states that the following classes of functions are identical

® partial recursive functions : :
® functions computable by a random access machine
e functions computable by a Turing machine

® functions computable by a Markov algorithm

B

These are, furthermore, actual equivalences in the sense that, if a function is defined
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- by a program for one of these formalisms, the program can be translated into any of

the others and the same partial recursive function will be obtained. v

1.1 6. Commcnts

(a) The concepts of recursive funct:ons, Tutmg machmes, Markov processes
and automata were developed before the arrival of the electronic computer but
after the mechanical calculators deSIgned by Pascal Babhage or Lady Lovelace
(the beautiful Ada).

(b)" All functions used in practloe in pattem reoogmtlon are primitive
recursive. When restrlcted to tlus class, the above theorem is fairly simple to, .,
prove. .
(c) If A* is the mﬁmte set of words formed froin the ﬁmte alphabet A, every
function (4*)” — A* is a recursive fnnctxon and can be 1mplemented by a random
access machine or a Tunng magchine, ConVetsely, every program for such a
machine defines a ret:ursive funchon. No niachme mare Rowerful than a rangiom
access or Turmg machme can, exist Clearly, less powexful machines can be
conceived, e.g. astack machme of 4 finite state automaton A modern computer is
equivalent to a random access machine or a Turing machine, neither more nor
- less; it is clearly much easier to use, as a consequence of the development of high
level programming languages ,

D) Computem were dcvelopgq essczntndlly for nnmencal thputatlon and
commercial data procesdmg. but thdx( scope is, mudh mote ,genqral to implement
any tecursive function, It is mtcm#mg o conslder‘ at what stage the scientific
corimunity undetstood this important fact. Aecordmg to Hamnying (1976), the
perception of computers as symlwl manipulators rather than numlper crunchers
. came fairly late, and, as ontogeny flows from ph\ylogq:ny, the samé steps towards

this understanding will be taken by every mdivxdual learnmg info nation science.

It is not clear, whether Turing. hlmself after proving that & ?l‘urmg machine
- can do anything that a computer can do, really undefstoad that a2 computer is a
manipulator of symbols (ie. represemations)‘,\j in any c:a he famous paper
by Burks,- Goldstcm and von Neumann (1947}sho vs that' they Saw the computer
only as a number cruncher Accéfdmg to Hammmg, it was not until 19521954
that a majority began to see that computers were more. than this. It has taken a
long time for the message to spread and one can say with some confidence that it
is not yet understood by the general public, who stxll see the computer as a kind of
super pocket calculator. : :

1.2. Computational complexity: hierarchical order

A finite number of elementary operations is necessary for the execution of an
algorithm or finite procedure. Let f.denote an algorithm which, given data x,
produces result y. Put very generally, the number of operations which have to be.
performed in this process depends on the size n of data x (a concept which we shalt
study in Section 1.2.1). If n is large, the dommant term O(n) is an estimate of the
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complexity of thé algorithm. For example, if the number of elementary operations .’
isa polynomial of degree r in n, then the order is O(n").

1.2.1. Coding the data

We must now give a precise meaning to the term “size n of data x’.

In pattern recognition, data are generally given simply as a string of binary
digits (bits) 0 and 1, or of numerical values to the same base, but this is not
necessarily the case for every problem that can be solved by means of an
algorithm; e.g. for problems concerning graphs there are many techniques for
coding the data provided by the graph, such as an array, a list of nodes together
with their neighbours etc. However, it is always possible to transform one

' representation into any other by means of a polynomial algorithm.

We shall assume that the coding schéme is‘reasonable’ and takes the form of
a list of elements formed from a k-alphabet. These elements, or symbols, cannot
necessarily be combined with each other as can numerical values, for example.
Alphabet 4 can be coded in bits, each symbel requiring |_logzk | for its
representation, and therefore any item of input data can always be reduced to a
string of bits. Furthermore, this is the only form that is accepted by a computer at
the level of its processing registers or memory cells; the decoding or interpreta-
tion of these bit strings is not always possible frony'the strings alone because other
important information often has to be provided,

We shall also assume that the passage from one reasonable representation to
another can be made by means of a polynomial transformation, in particular by a
simple multiplication by a constant.

Note It is usual to omit any constant multiplier from an expression O[ f{n)],
e.g. to write O(n?) rather than O(3n2), ’

1.2.2. Complexity and usefulness of an algorithm

Clearly, from the practical point of view the best algorithm for solving any
given problem is the least complex, but this leads to the question of whether it is
possible to prove that there is or is not a better algorithm than the one we happen
to know. For example, can it be proved that there is no polynomial algorithm for
the solution of some given problem or that the best possible. algorithm is
exponential? ‘ , '

We should note that the answer to this question can depend on the data’
there are cases in which an algorithm can change its complexity class (e.g. from
exponéntial to polynomial) for a small change in the nature of the data. We shall
give an example of this later, with the evaluation of a logical expression. When
considering complexity as a function of the data, we must distinguish between
moderate complexity, the most favourable complexity and the least favourable

_ complexity.
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i

We consider now the variation in complexity with the nature of O[ f(n)], as
illustrated by Fig. 1. This figure shows clearly why any problem of complexity
other than polynomial is intractable. A modern computer can execute about 108
clementary operations per second, or about 10! per day; even if we assume that
this performance will be increased by a factor of 10 in the foreseeable future, we
can see that a figure of 10'® operations per day will always be difficult to attain
and that 102° will never be reached. An exponential algorithm requires this
aumber of operations for only a moderately large value of data size n. Since, as we
shall see, a problem in speech recognition can easily involve data sizes of 10* bits
(and visual image recognition 10° bits), exponential algorithms aie completely
out of the question here.

data

. 100 1000 n
Fig. 1

More precisely, the computing power of large-scale modern machines is
often quoted in megaflops (millions of floating-point arithmetical operations per
second (Mflops) usually on 32-bit registers). For example, the CDC Cyber 205 is
usually quoted as operating at 200-800 Mflops and the Cray-1 at 40-160 Mflops;
esthnqtqg for the new Cray XMP are given as running up to 1000 Mflops.
Dgpb‘t_l_ess;_:e\?ep' more powerful machines will be produced in the future. The
power of a central processor is\sometimes quoted in millions of instructions per

;second__(l}:ips). .

- 'iI'aqu'l gives the increase in the size of problem that can be handled for given
‘increases in power, for a variety of complexity laws; here, N is the size that can be
hap'dl.e'd by the original machine."This shows clearly that, with an exponential
algorithm, even a very great increasein power has no effect if the size N of the data
exceeds a few tens. Thus, it is better to look JSor a polynomial algorithm (provided



