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Preface

Over the past twenty years there have been significant” developments
in the field of differential equations. The advent of high-speed computers
has made solutions by numerical techniques feasible and has resulted in a
host of new methods. The systems approach favored in many present-day
engineering problems lends itself to both matrix methods and Laplace
transforms. '

This book outlines, with many solved problems, both the classical
theory of differential equations and the more modern techniques currently
available. The only prerequisite for any of the topics treated is calculus.
As a supplement to standard textbooks, or as a textbook in its own right,
it should prove useful for undergraduate courses and for independent
study.

Chapters 1 through 21 and Chapters 87 through 39 cover the classical
material, including separable and exact equations, solutions of linear equa-
tions with constant coefficients by the characteristic equation method, vari-
ation of parameters and the method of undetermined coefficients, infinite
series solutions, and boundary-value and Sturm-Liouville problems. In'épn-
trast, Chapters 22 through 36 deal with the newer techniques currently
in vogue, in particular, Laplace transforms, matrix ‘Yhethods, and numeri-
cal techniques. This last subject, because of its great practical importance,
has been developed more complete]y than is usual at this level.

Each chapter of the book is divided into three parts. The first outlines
the salient points, drawing attention to potential difficulties and pointing
out subtleties that could be easily overlooked. The secand part consists of
completely worked-out problems which clarify the material presented in
the first part and which, on occasion, also expand on that development.
Finally, there is a section of problems with answers through which the
student can test his understanding of the materiai.

I should like to thank the many individuals who helped make this book

"a reality. The valuable suggestions by Joseph Klein and Jack Mieses for
Chapters 22 through 27, and those of Mabel Dukeshire, are all warmly

acknowledged. Particular thanks are due Raymond Raggi who programmed

most of the numerical methods and David Beckwith of the Schaum’s staff

for his splendid editing. Finally, my greatest debt is to my wife Evelyn

who besides doing most of the typing contributed substantially to the

editing and proofreading phases of this project.

RICHARD BRONSON

Fairleigh Dickinson University
October 1973
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- Chapter 1

Basic Concepts

1.1 ORDINARY DIFFERENTIAL EQUATIONS
A differential equation is an equation involving an unknown function and ite derivatives.

Example 1.1. The following are differential equations involving the unknown function y.

% = .5:!: + 3 4 (1.1)

ey% + 2<3_:>2 = 1 (1.2)

428 4 (sin x)% + 5y = 0 (1.9)
<%2x—’g>3 + 3y<§%>7 + ys(%).ﬁ = bz )
g%’ - 4% = 0 | (1.5)

A differential equation is an ordinary differential equation if the unknown function de-
pends on only one independent variable. If the unknow/n_/function depends on two or more
independent variables, the differential equation is a partial differential equation.

Example 1.2. Equations (1.1) through (1.4) are examples of ordinary differential equations, since the un-
known function y depends solely on the variable x. Equation (1.5) is a partial differential equation, since y
depends on both the independent variables ¢ and . :

In th1,s book we will be concerned solely with ordiiadry differential equations.

1.2 ORDER AND DEGREE

The order of a differential equation is the order of the highest derivative appearing in
the equation.

Exami)le 13. Equation (1.1) is a first-order differential equation; (1.2), (1.4), and (1.5) are second-order
differential equations. (Note in (Z.4) that the order of the highest derivative appearing in the equation
is two.) Equation (1.8) is a third-order differential equation.

The degree of a differential equation that can be written as a polynomial in the un-

- known function and its derivatives is the power to which the highest-order derivative is

raised.

Example 14. Equation (1.4) is a differential equation of degree three, since the highest-order derivative,
in this case the second, is raised to the third power. Equations (Z.7) and (1.8) are examples of first-degree
differential equations.



2 BASIC CONCEPTS [CHAP. 1

Not every equation can be classified by degree. For instance, (1.2) has no degree, as
it cannot be written as a polynomial in the unknown function and its derivatives (because

of the term ev). )
13 LINEAR DIFFERENTIAL EQUATIONS

An nth-order ordinary differential eduation in the unknown function y and the inde-
pendent variable z is linear if it has the form

@I + bt 4 b@ P+ by = @ (16)
" dx" "R gt T Wz ¢ )

The functions by(x) (7 =0,1,2,...,n) and g(x) are presumed known and depend only on

the variable z. Differential equations that cannot be put into the form (1.6) are nonlinear.

Example 15. Equation (1.1) is a first-order linear equation, with b;(z) = 1, by(x) = 0, and g(x) = bx + 3.
Equation (1.3) is a third-order linear equation, with bs(x) =4, by(x) =sinz, b,(x) =0, by(x) = bz, and
g(z) = 0. Equations (1.2) and (1.4) are nonlinear. :

14 NOTATION

The expressions ¥, ¥, ¥/, ¥y*, ..., y™ are often used to represent, respectively, the
first, second, third, fourth, ..., nth derivatives of y with respect to the independent vari-
able under consideration. Thus, %’ represents d?y/dz? if the independent variable is z, but
represents d?y/dp? if the independent variable is p. If the independent varxable is time,
usually denoted by ¢, primes are often replaced by dots. Thus, ¥, %, and ¥ represent dy/dt
dy/dt?, and d*y/dt®, respectively.

Observe that parentheses are used in y™ to distinguish it from the nth power, y*.

Solned Problems

In the following problems, classify each differential equation as to order, degree (if ap-
propriate), and linearity. Determine the unknown function and the independent variable.

-

11. y” —bxy = e+ 1.

Third-order: the Highest-order derivative is the third. First-degree: the equation has the form
required in Section 1.2, and the third derivative is raised to the first power. Linear: by(z) =1,
by(x) = 0, by(x) = —bz, by(x) =0, g(x) = e*+ 1. The unknown function is y; the independent vari-
able is z.

12, tf+ % — Sint)/F = £~ + 1.

Second-order: the hxghest-order derivative is the second. No degree: because of the term V7,
the equatlon cannot be written as a polynomial in y and its derivatives. Nonlinear: the equation
cannot be put into the form (1.6). The unknown function is y; the independent variable is ¢.

d*t dt
13. &= + st =
ds? ds
Second-order. First-degree: the equation is a polynomial in the unknown function ¢ and its
derivatives (with coefficients in s), and the second derivative is raised to the first power. Nonlinear:
b, = st, which depends on both s and t. The unknown function is t; the independent variable is s.

8.
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d*b\* db\1°
1.4. 5(@7) + 7(?1-1;) + b - b = p.

Fourth-order. Fifth-degree: the equation has the form required in Section 1.2, and the fourth
derivative is raised to the fifth power. Nonlinear. The unknown function is b; the independent
variable is p. '

&z
) dy

Second-order.. First-degree. Linear: by(y) =y, by(y) =0, by(y) =0, and g(y) =y*+1. The

unkhown function is x; the independent variable is y. :

1.5. = 9 + 1.

Supplementary Problems

For the following differential equations, determine (a) order, (b) degree (if appropriate), (c) linearity,
(d) unknown function, and (e) independent variable.

d2r\2 a2 _ dr
"ne ’ — ar aér - er _
1.6. W2 —3yy +zy 0. EAiN ( dy2> +.dy2 +ydy 0.
' = d2y 8/2
L7, o4y W+ ay’” = el , =102 (d—;2'> ty—==z
18. % —t8 = 1— sint. 13, Eb _ 3
dp”
v . - 7
19. y@ + ay’” + a%” — 2y’ +siny = 0. 114, f(%) = 3p.
dnrx-
—_— = 2
1.10. a y2+ 1.

Answers to Suppleéenjary; Problems

1.6. (@2 (b2 . (¢) nonlinear (d)y (e) =
17, @4 @)1 (¢) linear (d)y . (e) z
18. @2 @1 (¢ linearv (d) s (e) t_ |

1.9. (@)4 (d)none (o) noplinear Dy (=

6. @n ()1 (c) linear_ @z ()y-

111, (a)2 b) 2 (c) nonlinear (d)r (e) ¥

112. - (@)2 (b)none (c) nonlinear (d)y (e) = -

3. @7 ®1  ()linear @b ()p .

1.14 (a) 1 )7 (c) nonlinear (d) b (e) p



Chapter 2

~ Solutions

21 DEFINITION OF SOLUTION.

A solution of a differential equatidn in the unknown function ¥ and the independent
variable # on the interval J is a function y(z) that satisfies the differential equation iden-

tically for all z in 4.

Example 2.1. Is y(x) = ¢, sin2x + ¢y cos2x, where c¢; and c, are arbitrary constants, a solqtion of
y' +4y = 07
Differentiating y, we find:

y' = 2c¢,cos2x — 2c,sin2x y' = —dcysin2x — 4c, cos2x

Hence, y' + 4y = (—4c,v 8in 2¢ — 4c, cos 2x) + 4(c, sin 2z + ¢, cos 2)

i

(—4cy + 4¢y) sin2x + (—4cy + 4¢,) cos 2z
= 0 e .

Thus, y = ¢, sin2% + ¢, cos 2x satisfies the differential equation for all values of x and is a solution
on the interval (—w, ),

Example 22. Determine whether y = 22—1 is a solution of (y')*+y2 = —1.

Note that the left side of the differential equation must be nonnegative for every real function y(z) and
any «, since it is the sum of terms raised to the second and fourth powers, while the right side of the
equation is negative. Since no function y(x) will satisfy this equation, the given differential equation has
no solution, '

We see that some differential equations have infinitely many solutions (Example 2.1),
whereas other differential equations have no solutions (Example 2.2). It is also possible
that a differential equation has exactly one solution. Consider (¥’)*+ %= 0, which for
reasons identical to those given in Example 2.2 has only the solution ¥ = 0.

2.2 PARTICULAR AND GENERAL SOLUTIONS

A particular solution of a differential equation is any one solution. The general solu-
tion of a differential equation is the set of all solutions.

Example 23. The general solution to the differential equation in Example 2.1 can be shown to be (see
Chapters 11 and 12) y = c, sin 22 + ¢y cos 22. That is, every particular solution of the differential equa-
tion has this general form. A few particular solutions are: (a) y = 5 sin 2z — 3 cos 2x {choose ¢; =5
and ¢y = —3), (b)) y = sinZ2x (choose ¢;=1 and ¢,;=0), and (¢) y =0 (choose ¢; = ¢, = 0).

The general solution of a differential equation cannot always be expressed by a single
formula. As an example consider the differential equation ¥’ + 2= 0, which has two par-

ticular solutions ¥ = E-and y = 0. Linear differential equations are special in this regard

and their general solutions are discussed in Chapter 11.

4



CHAP. 2) . SOLUTIONS | . 5

2.3 INITIAL-VALUE PROBLEMS. BOUNDARY-VALUE "PROB&.EMS‘

A differential equation along with subsidiary conditions on the unknown function and
its derivatives, all given at the same value of the independent variable, constitutes an initial-
value problem. The subsidiary conditions are inttial conditions. If the subsidiary condi-
tions are given at more than one value of the independent variable, the problem is a
boundary-value problem and the conditions are boundary conditions. .

Example 24. The problem y”+2y’ = e% y(») =1, y'(r) =2 is an initial-value probiem, since the two
subsidiary conditions are both given at z = .. The problem ¥ +2y' =e%; »0)=1, yl)=1 is a
boundary-value problem, since the two subsidiary conditions are given at the different values « = & and
z =1, e

A solution to an initial-value or boundary-value problem is a function y(x) that both
solves the differential equation (in the sense of Section 2.1) and satisfies all given subsxdlary

conditions.

Example 25. Determine whether any of the functions (a) ¥, = 8in2z, (b) ya(x) ==z, or () ws(z) =
4 sin2z is a solution to the initial-value problem y” +4y =0; ¥(0) =0, ¥'(0) = 1. (a) y(x) is a solu-
tion to the differential equation and satisfies the first initial condition y(0) = 0. BHowever, y;(x) does not
satisfy the second initial condition (yi(z) = 2 cos2x; 1(0) = 2co30 = 2 # 1); hence it is not a solution
to the initial-value problem. (b) yo(z) satisfies both initial conditions but does not sstlsfy the differential
equation; hence y,(x) is not a solution. (¢) yy(x) satisfies the differential equation and both initial condi-
tions; therefore, it is a solution to the initial-value problem.

Solved Problems .

2.1. Determine whether y(x)=2e¢ *+xe * is a solution of y” + 21)’ +y=0.
Differentiating y(x), it follows that
) Y(@) = —26"+e"T—ge 2 = —e~Z— ze—%
Y'(x) = e T—e T+ ger = ge— %
Substituting these values into the differential equation, we obtain
V' ¥ 2 +y = zemt+ 2(—e~T—ze—%) + (267 +ze—%) =

Thus, y(x) is a solution.

22. Is y(x) =1 a solution of ¥’ +2y' +y=2z?
From y(x) =1 it follows that ¥(x) =0 and y"(z) = 0. Substltutmg these values into the
differential equatxon, we obtain
y"+2y+y 0+2(0)+1‘-;1+z

Thus, y(x) = 1 is not a solution.

~

2.3. Show that y =Inz is a solution of zy”+4’ =0 on J=(0,=) but is not a solution
on 9= (—ow, ), :
On (0, ») we have y’' =1/x and y” = —1/z2. Substituting these values into the differential
equation, we obtain ' ’
)’ + ¥y = x(———1§> + P 0
z z

“Thus, y =Inz is a solution on (0, »).



24.

2.5.

2.6.

2.7.

SOLUTIONS - [CHAP. 2

Note that ¥ =Inz could not be a solution on (—=, =), since the logarithm is undefined for
negative numbers and zero.

Show that y = 1/(2*>—1) is a solution of ¥’ + 2xy? =0 on 9 =(-1,1) but not on any
larger interval containing J.

On (—1,1), y =1/(x*-1) and its derivative y’ = —22/(x>—1)2 are well-defined functioms.
Substituting these values into the differential equation, we have

_ 2% 1 2
¥ + 2zy2 = _W + 2:!:[;2Ti]
Thus, y = 1/(x2—1) is a solution on J = (—1,1).

Note, however, that 1/(x2 — 1) is not defined at = = *1 and therefore could not be & solution
on any in)terva! containing either of these two points.

Find the solution to the initial-value problem %'+ =0; %(8) =2, if the general
solution to the differential equation is known to be (see Chapter 8) y(z)= cie~*,
where ¢, is an arbitrary constant. .

Since y(x) is a solution of the differential equation for every value of ¢;, we seek that value of
¢, which will also satisfy the initial condition. .Note that y(3) = c,e's. To satisfy the initial con-
dition y(8) = 2, it is sufficient to choose ¢, so that ¢;e—3 = 2, that is, to choose ¢; = 2¢3. Substi-
tuting this value for ¢; into y(x), we obtain y(x) = 2e3¢—= = 2¢3-7 ag the solution of the initial-
value problem.

Find a solution to the initial-value problem y” +4y =0; y(0) =0, ¥’ (0) =1, if the
general solution to the differential equation is known to be (see Chapter 12)
y(x) = ¢: 8in 22 + ¢2 cos 2z.

Since y(x) is a solution of the differential equation for all values of ¢, and ¢, (see Example 2.1),
we seek those values of ¢, and ¢, that will also satisfy the initial conditions. Note that y(0) =
¢, 8in0 + ¢3 c080 = ¢,. To satisfy the first initial condition, y(0) = 0, we choose ¢y = 0. Fur-
thermore, y'(x) = 2¢; cos 2z — 2¢, sin 2%; thus, y'(0) = 2¢; cos 0 — 2¢, 8in0 = 2¢,. To satisfy the
second initial condition, y'(0) =1, we choose 2¢, =1, or ¢; = 4. Substituting these values of ¢,
and ¢; into y(z), we obtain y(z) = -} sin2x as the solution of the initial-value problem. (See
Example 2.5.)

Find a solution to the boundary-value problem y” + 4y = 0; y<§) = 0, y<§> =1,
if the general solution to the differential equation is y(x) = ¢18in 2z + ¢z cos 2z.

Note that _
y<§> = ¢ sin <%> + e cos(—;{) = ¢(3V2) + c(3V2)
To satisfy the condition y<%> = 0', we require .

e1(3V2) + (3V2)

I
S

Furthermore,
y<§> = ¢ sin(%> + ey cos<§> = a3V3) + ed)

To satisfy the second cendition, y<§> = 1, we require
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2.8.
LN

2.9.

2.10.

PVier+ ey = 1 (2)
Solving (1) and (2) simultaneously, we find d
.2
e = —. =
1 2 \/3 -1

Substituting these values into y(z), we obtain

ywz) = 2 (sin 2% — cos 2x)

i 1

as the solution of the boundary-value problem.’

Find a solution to the boundary-value problem y”+4y =0; y(0) =1, y(x/2) =2, if
the general solution to the differential equation is known to be y(x) = ¢1sin 2z + ¢z cos 2.

Since »(0) = ¢; sin0 + ¢, cos0 = ¢;, we must choose ¢; =1 to satisfy the condition »(0) = 1.
Since y(%) = ¢y sinz + ¢g cosr = —cp, We must choose ¢; = —2 to satisfy the second condition,
Y % = 2. Thus, to satisfy both boundary cond_itions simultaneously, we must require ¢, to equal

both one and minus two, which is impossible, Therefore, there does not exist a solution to this
problem

Determine ¢; and ¢z so that y(z) = c¢:18in2z + ¢2 cos 22 + 1 will satisfy the conditions
y(%) =0 and y’(%) = /2. '
Note that

y(%) = ¢ 8in <§> + ¢y cos (%) + 1 = @3V2) + dV2) + 1

To satisfy the condition y(%) = 0, we require c,(-}\/'z_ )+ cz(i\/é) +1 = 0, or equivalently,

erte, = —V2 1)

Since y'(x) = 2c, cos 2z — 2¢, sin 2z;

y’<g> = 2¢ cos <%> — 2¢, sin (-Z)

= 20,(3V2) ~ 26(4V2) = VZe — VEo

To satisfy the condition y < > ERYS) 2, we require V2 2¢, —V2 6 = \/5, or equivalently,
¢G—e6 =1 . - A9

Solving (Z) and (2) simultaneously, we obtain ¢, = —%(\/'5—1) and ¢ = *—i(\/E-F 1).

Determine ¢; and c¢: so that y(z) = cie** +c:e*+2sinz will satlsfy the condltxons
¥(0) =0 and %(0)=1. ¢

Because sin0 = 0, y(0) = c,+c,. To satisfy the condition ¥(0) = 0, we require
3% + Cy = 0 : (1)



2.11.

2.12.

SOLUTIONS . [CHAP. 2

From y'(x) = Bc,e2% + cqe* + 2 cos
we have y'(0) = 2¢; +c;+2. To satisfy the condition y’(0) =1, we require 2¢;+¢,+2=1, or
2¢;+ ¢y = —1 2)

Solving (1) and (2) simultaneously, we obtain ¢; = —1 and ¢y, = 1.

Supplementary Problems

. b
Which' of the following functfons are solutions of the differential equation y”’—y =07 (a) e,
(b) sinz, (c) 4¢7%, (d) 0, (e) 2122+1.

Which of the following functions are solutions of the differential equation y'' —d4y’ + 4y = €*?
(a) ez, (b) €2, (c) e2*+ e%, (d) xe2* + ez, (e) €2* + xe?.

In Problems 2.13-2.22, find ¢; and ¢; so that y(x) = ¢, sinz + ¢, cosz will satisfy the given conditions,
Determine whether the given conditions are initial conditions or boundary conditions.

2.13.

2.14.

2.15.

2.16.

2.17.

¥(0) = 1, y'(0) = 2. 218, y(0) =1, y(z) = 1.
¥(0) =2, y'(0) =1 219. y(0) =1, yr) = 2
y<§”> =1, y’<§> =2 220. y(0) = 0, y40) = 0.
y(0) = 1, y<g> =1 2.21. y(—'}) =0, ,,(-;5) -
¥ =1, y<%> =1 222.  y(0) =0, y'<§"’> =1,

In Problems 2.23-2.27, find values of ¢; and ¢, so that the given functions will satisfy the prescribed initial

conditions.

223. ° y(x) = cie* + ce T+ 4sinz; y(0) = 1, ¥'(0) = —1.
224, y@) = cmtetat—1; yl) =1, y'(1) = 2.

225, (e) = c16" + oyt £ 6% y(0) = 0, ¥'(0) = o.
2.26.. ylx) = ¢ sinxb+ cgcosx +1; ylx) =0, y(z) = 0.
221 y(x) = cre® + cyze + x2e7; y(1) = 1, ¥'(1) = —1.
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Answers to Supplementary Problems
(@), (o), @ '
(a), (¢), (d)
¢, =2, ¢, =1; initial conditions
¢; =1, ¢y = 2; initial conditions
e; =1, ¢ = —2; initial conditions
¢; = ¢ = 1; boundary conditions
cp =1, ¢g=—1; bbundary conditions
e =-1, ¢g=1; boupdar;r conditions
no values; boundary conditions
¢; = ¢g = 0; initial conditions

~2 2

'c, = Cy = ; boundary conditions

vi-1" 7 V3-1
no values; boundary conditions
g = =2, ¢ =38

cg =20, ¢ =1

€, =3, ¢g = —6

¢ =0, ¢ =1

¢ =1+



