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SERIES EDITOR’S FOREWORD

This Benchmark Series in Electrical Engineering and Computer Science
is aimed at sifting, organizing, and making readily accessible to the reader
the vast literature that has accumulated. Although the series is not intented
as a complete substitute for a study of this literature, it will serve at lea‘t,
three major critical purposes. In the first place, it provides a practical point’
of entry into a given area of research. Each volume offers .an expen{’ga
selection of the critical papers ona given topic as well as his views on its
structure, development, and present status. in the second,pface, the series
provides a convenient and time-saving means for study in.areas related to
but not contiguous with one’s principal interests. 1&sf, but by no means
least, the series allows the collection, in a particularly compact and conve-
nient form, of the major-works on which presént research activities and
interests are based. o

Each volume in the series has been collected, organized, and edited by .
an authority in the area to which it pertains. In order to present a unified
view of the area, the volume editor has prepared an introduction to the -
subject, has included his comments on each article, and has provided a
subject index to facilitate access to the papers.

We believe that this series will provide a manageable working library of
the mostimportant technical articles in electrical engineering and computer
science. We hope that it will be equally valuable to students, teachers,
and researchers. )

Walsh Functions in Signal and Systems Analysis and Design is edited by
S. G. Tzafestas of the National Technical University in Athens, Greece. It
consists of thirty-eight papers and editor’'s comments on Walsh functions—
their definition, generation, computation and application to system analysis,
identification, and design.

" JOHN B. THOMAS
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PREFACE

Waish functions constitute a set of orthogonal functions that have
received increasing attention in recent years in a variety of engineering areas
such as communication, signal processing, system analysis, and control.
Since Walsh functions and transforms are naturally more suited for digital
computation, an effort has been made to gradually replace the Fourier
transform by Walsh-type transforms. Actually, the Walsh function field has
experienced a significant development, and a'large amount of theoretical
and applied results are presently available.

This volume is the outcome of the editor’s feeling that a cohesive book
is needed to bring together the major efforts and results of the technical
literature on Walsh functions. Thirty-eight papers have been reprinted and
additional works are mentioned in the editor's comments.

The book is organized into eight parts. Each part contains original works
that have appeared in various technical journals. Existing textbooks on
Walsh functions cover only specialized aspects and present the theory from
particular angles of attack, while Walsh Functions in Signal and Systems
Analysis and Design involves a large diversity of results and explains how
these results have been achieved. My effort here has been to compose a
volume containing a well balanced spectrum of works carried out since the
appearance of Harmuth's pioneering paper in 1968 (Paper 1). It is hoped that
the book will provide a useful source to researchers and practitioners in the
field of Walsh and block pulse functions and their applications.

SPYROS G. TZAFESTAS
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INTRODUCTION

Walsh functions belong to the class of piece-wise constant basis functions
(PCBF) that have been developed in the twentieth century and have played an
important role in scientific and engineering applications. The mathematical
techniques of studying functions, signals, and systems through series expansions
in orthogonal-complete sets of basis functions are now a standard tool in all
branches of science and engineering. Actually, the signals involved in Morse
telegraphy are PCBFs, but no mathematical study of these signals was made
prior to the beginning of the twentieth century. »

The origin of the mathematical study of PCBFs is due to Alfred Haar (1910;
1912), who used a set of functions bearing his name. These functions have not
found much use in comparison to the Walsh and block pulse functions considered
in this book (Harmuth, 1969; Ahmed and Rao, 1975; Beauchamp, 1975; Prasada
Rao, 1983; Tzafestas, 1983; Prasada Rao and Tzafestas, 1985). The development
and utilization of Walsh functions has been strongly influenced by the parallel
developments in digital electronics and computer science and engineering.
Efforts to replace Fourier transforms by Walsh-type transforms have been made
in communication, signal processinig, image processing, pattern recognition,
and so forth. The entrance of Walsh functions into the systems and control field
was only about a decade ago, the developments since then occurring rapidly.

The bésic definitions of Walsh functions and the ways of generating them
by hardware devices are given in Part |. Algorithms for Walsh transform
computation, as well as hardware implementations of these algorithms, are
discussed in Part |1, which includes the works on the sampling principle expressed
in terms of the frequency in the Walsh domain (sequency).

The analysis of dynamic systems via Walsh function expansions is pre-
sented in Part |1l. Lumped parameter, distributed parameter, linear, nonlinear,
multivariable, time delay, and integral equation-type systems are considered.
The work on system parameter estimation via Walsh functions is presented in
Part 1V where the types of systems considered in Part |11 are studied.

The problems of designing optimal controllers, observers, and filters via
Walsh functions are discussed in Part V. A diversity of results are included,
covering most cases studied thus far. Lumped parameter, distributed parameter,
and time delay systems are studied.
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Part VI discusses the application of block pulse functions to systems analysis,
identification, and control. Block pulse functions give results similar to those
obtained through Walsh functions and offer considerable computational
advantage, Block functions can be used for systems discretization in the same
way that the bilinear transformation and the state transition matrix are used. A
comparison of their relative characteristics is provided by Sinha and Zhou
(1983). The one-shot operational matrices of Prasada Rao and Palanisamy
(Paper 15) play an important role in reducing the errors when using Walsh and
block pulse functions in high-order system analysis and design. Also noteworthy
are the multidimensional block pulse_functions that are useful in the study of
distributed parameter systems described by partial differential equations (Nath
and Lee, 1983; Prasada Rao and Srinivasan, 1980).

The properties of Walsh transforms and the process of Walsh-to-Fourier
transform conversion are studied in Part V1. Aspects such as Walsh transform
expression in terms of function derivatives, relation of cyclic autocorrelation
with Walsh-Hadamard transform, and relation between arlthmetlc and logical
autocorrelation functions are considered.

A representative set of Walsh transform applications is provided in Part
VIIL. These applications include biomedical signal (such as the EEG signal)
processing, image coding, speech coding, statistical analysis, Boolean function
classification, neutron transport theory, nuclear reactor test input design, and
system-response time measurement.
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Editor's Comments
on Papers 1,2, and 3

1 HARMUTH
A Generalized Concept of Frequency and Some Applications

2 AHMED, SCHREIBER, and LOPRESTI

On Notation and Definition of Terms Related to a Class of Complete
Orthogonal Functions ,

3 GAUBATZ and KITAI :
A Programmable Walsh Function Generator for Orthogonal Sequency Pairs

The foundations of the Walsh functions field were made by Rademacher
(1922), Walsh, (1923), Fine (1949, 1950), Paley (1952), and Kaczmarz and
Steinhaus (1951). The engineering approach to the study and utilization of
these functions was originated by Harmuth (1969a, 1969b), who introduced the
concept of sequency to represent the associated, generalized frequency defined
as one-half the mean rate of zero crossings. The variety of Walsh function
definitions is due to the existence of different orderings. In the sequency
ordering (or Walsh ordering), which is popular in communication engineering,
Walsh functions are ordered according to the zero crossings (or sign changes).
This sequency ordering implies that the ith Walsh function wal (i, t) has i zero
crossings in the interval t[0,1], and, obviously, is directly related to the sequency
concept. The Paley ordering (Paley, 1952) is characterized by the fact that in this
form Walsh functions are represented by products.6f Rademacher functions,
which lead to useful, recursive, Walsh-signal generation algorithms. A third

- ordering was proposed by Henderson (1964, 1970) and is merely Paley’s ordering
- in reversed binary. Henderson's ordering f5 computationally attractive and

occurs when one computes fast Walsh transforms (FWT) without sorting. Yuen
(1972) called the index i, in wal (i, t), the “zequency” of wal (i, t) to show that it
represents both the generalized frequency and the number of zeros of wal (i, t).

Paper 1 provides the background of Walsh transform theory, defines and
uses the sequency concept, arid introduces the sal and cal functions, which are
analogous to the sine and.cosine functions. Paper 2 presents a set of terms and
definitions that standardize the analysis of Walsh functions. These definitions
are nonambiguous and can assist workers and authors of papers to present their
results in a unifying way. Paper 3 provides the logic design and implementation
of a useful, programmable Walsh function generator.

Other definitions of Walsh functions have been given by Lackey and
Meltzer (1971) through the Rademacher function products, and by Butin (1972)



Editor’'s Comments on Papers 1, 2, and 3

using polynomial expansions. The Butin definition leads to an easy way of
deriving certain Walsh function properties, for example, their connection with
the shifting theorem or the Gray code. Proof of the Lackey and Meltzer technique
for selecting the combination of Rademacher functions generating a desired
Walsh function is given in a paper by Davies (1972). In the same paper a digital
Walsh-function generation scheme is also developed. Durrani and Nightingale
(1971) provide sequential circuits for the generation of three sets of discrete
Walsh functions without reference to any alternative sequency representation.
Kitai and Siemens (1972) developed a sequency-ordered, Walsh-function
generation scheme, which employs a Gray code counter and is free from
hazards. Tzafestas, Frangakis, and Pimenidis (1976) gave a unified presentation
of some Walsh function definitions, and on the basis of these definitions they
designed global, digital, Walsh-function generating circuits.
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Copyright © 1968 by The Institute of Electrical and Electronics Engineers, Inc.
Reprinted with permission from IEEE Trans. Inf. Theory 11-14:375-382 (1968)

A Generalized Concept of Frequency
and Some Applications

HENNING ¥. HARMUTH, MEMBER, IEEE

Abstract—The system of sine and cosine functions has been
distinguished historically in communications. Whenever the term
frequency is used, reference is made implicitly to these functions;
hence the generally used theory of communication is based on the
system of sine and cosine functions. In recent years other complete
systems of orthogonal functions have been used for theoretical
investigations as well as for equipment design. Analogs to Fourier
series, Fourier transform, frequency, power spectra, and amplitude,
phase, and frequency modulation exist for many systems of orthog-
onal functions. This implies that theories of communication can be
worked out on the basis of these systems. Most of these theories
are of academic interest only. However, for the complete system
of the orthogonal Walsh functions, the implementation of circuits
by modern semiconductor techniques appears to be competitive in
a number of applications with the implementation of circuits for

the system of sine and cosine functions.
Ta distinguished role in communications. There are
a number of historical and practical xreasons for
this. From the theoretical point of view, one of the major
reasons is that Fourier series and Fourier transform permit
" the representation of a large class of functions by a super-
position of sine and cosine functions. This representation
makes it possible to apply the concept of frequency, which
was originally defined for sine and cosine only, to other
functions.

In recent years more general classes of complete systems
of orthogonal functions have been used for theoretical
investigations as well as equipment design."’~'"""*"" Fur-
thermore, semiconductor devices have made it practical
to use linear time-variable circuits instead of linear time-
invariant ones. While sine and cosine have indisputable

" advantages for linear time-invariant circuits they often
lead to unnecessary complications if used to analyze
time-variable circuits.

The purpose of this paper is to show that analogs exist
to Fourier series, Fourier transform, frequency, power
spectra, and amplitude, phase, and frequency modulation
for many systems of orthogonal functions. For one such
system, that of the Walsh functions, the experimental level
has been reached for the analogs to frequency multiplex

INnTRODUCTION

HE SYSTEM of sine and cosine functions plays

Manuscript received April 18, 1967; revised November 7, 1967.
This work was supported by the Defense Department of the Federal
Republic of Germany. under Contract T-563-L-203. .

e suthor is at 2 Lise Meitner Weg, 7501 Leopoldshafen,
West Germany. ’ .

telephony and other applications.' Hence, we will be
mainly concerned with these Walsh functions.®'~!**!

GENERALIZED FOURIER TRANSFORM

It is well known that the analog to the Fourier series
exists for many systems of orthogonal functions. Examples
are series expansions in Bessel functions, spherical func-
tions, orthogonal polynomials, etc. It is also known that
analogs to the Fourier transform exist for many systems
of functions."”"*"*® However, most of the generally used
complete systems of orthogonal functions are defined by
linear differential equations of second order, and it can
be shown that the generalized Fourier transform is in
this case essentially the same as the ordinary- Fourier
transform. Consider, e.g., the differential equation of the
Legendre polynomials:

A -2 -2z +jG+1) =0 ¢}

The generalized Fourier transform of a function that
vanishes outside a finite interval z, < z < z, consists
of a superposition. of Legendre polynomials with large
value of j and small values of z. The differential equation
(1) reduces in this case to that of the sine and cosine
functions, and the Legendre-Fourier transform to the
ordinary Fourier transform except for scale factors.'®
Walsh functions can be defined by a difference equation
rather than a differential equation, and the generalized
Fourier transform or Walsh-Fourier transform is quite
different from the ordinary Fourier transform,'®
Such a transform has been known for some time,” but its

1 Circuits of filters, modulators, Walsh function generators, ete.
for telephon multipfex tems are shown in previous {;&Pem. tas}
More general filters are discussed in a paper by Pichler.*] Radio
transmission by Walsh carriers is treated in “Uber Funkverkehr mit
Sequenzteilung an Stelle von Frequenz- oder Zeitteilung,” Defense
Department, Federal Republic of Germany Project RePt. T-675-L-
203. Speech analysis was done by M. Tasto in a thesis, “Analyse von
Zeitfunktionen durch Miandertransformation und durch Fourjer-
Transformation,” Technische Hochschule Darmstadt,
fir al]ﬁemeine ‘Nachrichtentechnik. The results of this thesis are
presently used by M. Boesswetter of the same institute for de-
velopment of a sequency channel vocoder. rimental work on
filters is further done by Prof. H. Lueg, Technische Hochschule
Aachen. Filter and modulator circuits are also shown in Harmuth. i
A thelphony multiplex system using Walsh functions as carriers has
been developed by H. Like and R. Maile of AEG-Telefunken
Research Institute. Schemes for 2pplying the dyadic correlation
function [ F(t)G(¢t 4+ T) dt instead of the usual one, for producing
Walsh-shaped instead of sine-shaped electromagnetic waves in the
visible-:':fht region, for high-resolution and shape-recognizing Walsh-
wave radar, etc., are in the theoretical stage.

* The Walsh-Fourier transform, in a different form from the cne
used here, is due to N.J. Fine. The term “Fine transform" is some-
times used.
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Fig. 1. Walsh functions wal (0, 6), cal (%, 6), and sal (¢, 8).

form was not suitable for a generalization of the concept
of frequency since the Walsh functions were ordered in a
sequence that followed from their original definition by
products . of Rademacher functions.'” The difference
equation yields them in the sequence shown by Fig. 1.
In this figure they are ordered according to the number of
sign changes or zero crossings in the half-open interval
—4% < 6 < %. The functions cal (¢, 6) and sal (3, 6) have
2¢ zero crossings in this interval; 1 = 1, 2, --- . Further-
miore, all functions cal (i, 6) equal 41 and all functions
sal (i, 6) change from —1 to +1 for § = 0.
Using the notation*

wal (2¢, ) = cal (1, 6),
wal (2 — 1,6) =sal (5,60, —3=<60<1}
wal (2,0) =wal (2 — 1,60 =0, 6<—4%, 62 +%

one may write the difference equation of the Walsh
functions in the following form:*

wal (2k + ¢, 6) = wal (—1)™*1*[k, 26 + %)
+ (—1** wal (k, 20 — 3)]

wal(0,6) =1, —3<6<+i}
=0, 6<-3% 6>++3
g=0 or 1; k=012, ---.

3 The functions —sal (1, 6) and +sal (2%, 8), k = 1,2, ---
the Rademacher functions. .

4 The notations sal (i, 6) and cal (4, 8) have the advantage of
showing the similarity to sine and cosine. The notation wal (k, 6) is
frequently better suited for computation. For instance, the multi-
plication "theorems (22) reduce to one theorem wal (i @ k, 8) =
wal (i, 8) wal (k, 6). In analogy, the multiplication theorems (21)
for sine and cosine reduce to one theorem if complex notation is .

% (k/2] means the largest integer amaller than or equal to k/2.
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For explanation consider the Walsh function wal (0, 6)
of Fig. 1. Shifting it by 4 to the left into the interval
—1 £ 6 < 0 yields wal (0, 8 + %) and compressing it
by a factor 2 into the interval —} £ 6 < 0 yields wal (0,
20 + 3). Similarly, wal (0, 26 — %) is obtained by shifting
wal (0, 8) to the right and compressing it into the interval
0 £ 6 < 4. For ¢ = 0 we obtain the sum (—1)°**{wal
©, 20 + %) 4+ (—1)°*° wal (0, 26 — 3)] which evidently
equals wal (0, 8). For ¢ = 1 we obtain the sum (—1)"*' .
[wal (0, >0 + 3) 4+ (—1)°** wal (0, 26 — 3)) which equals
wal (1, 8) = sal (1, 6). Similarly, one obtains from wal (1, 6)
the shifted and compressed functions wal (1, 26 + ) and
wal (1, 20 — 3). The sum (—1)"*[wal (1, 260 + 3)+
(—=1)*° wal (1, 20 — 3)] yields wal (2, 6) = cal (1, 6),
and the sum (—1)°*'[wal (1, 20 + %) + (—1)'*! wal
(1, 20 — 3)] yields wal (3, ) = sal (2, 6).

A Walsh-Fourier series expansion of a function F(6)
defined in the interval —% < 6 < 3} has the following form:

F(6) = a(0) wal (0, 6)

+ 3 a6 el G, 0) + e sl G, 0, @)

where

172

a(O) = ‘ll‘:/i F(o) wal (O, 0) d0 = ./;‘/2 F(ﬂ) de'

1/2

a(?) = Y F(6) cal (3, 6) do,

-1

172 N
a@ = [ F@)sal G, 0) do.
-1/2

The set of functions required for the Walsh-Fourier
transform may be derived by stretching the functions of
Fig. 1 by a factor ¢ and denoting the stretched functions
cal (4, 6) and sal (¢, 6) by cal (¢/% 6) and sal (i/¢, 6). If
£ and ¢ approach infinity in such a way that the limit
» tlim i/t =p ®
exists, one obtains the system of Walsh meander functions
{cal (u, 6), sal (s, 6)} which are defined in the interval
—o < 6§ € 4 o for all real non-negative values of u.
It is useful to extend the definition to negative values of
u by making cal (g, 6) a symmetric and sal (u, 6) a skew
symmetric function of u:

cal (—p, 6) = cal (4, 6), sal (—p, 6) = —sal (4, 6). (4)

The derivation of the functions cal (g, 6), sal (g, 6) from
the Walsh functions cal (3, 6), sal (3, 6) is discussed in &
more mathematical fashion by Pichler."'! : A

The Walsh-Fourier transform of a function F(6) and
its inverse have the following form:

() = f_ : F(6) cal (u, 0) db, o

6 = [ Po sl 0) as,



