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Preface

As physics advances, its theoretical statements require ever
“higher” mathematics. In this connection it is well worth quoting
what the eminent English theoretical physicist Paul Dirac said
in 1930 (Dirac [1]) when he gave a theoretical prediction of the
existence of antiparticles:

It seems likely that this process of increasing abstraction
will continue in the future and that advance in physics is to
be associated with a continual modification and generalisation
of the axioms at the base of the mathematics rather than
with a logical development of any one mathematical scheme
on a fixed foundation.

~ Subsequent development of theoretical physics, particularly
of quantum field theory, fully corroborated this view. Again in
this connection we quote the apt words of N.N. Bogoliubov.
In 1963 he said: “The basic concepts and methods of quantum
field theory are becoming more and more mathematical.”

The construction and investigation of mathematical models
of physical phenomena constitute the subject of mathematical
physics.

Since the time of Newton the search for and study of mathe-
matical models of physical phenomena—the problems of mathe-
matical physics—have made it necessary to resort to a wide range
of mathematical tools and have thus stimulated the development
of various areas of mathematics. Traditional (classical) mathe-
matical physics had to do with the problems of classical physics:
mechanics, hydrodynamics, acoustics, diffusion, heat conduction,
potential theory, electrodynamics, optics and so forth. These
problems all reduced to boundary-value problems for differential
equations (the equations of mathematical physics). The basic
mathematical tool for investigating such problems is the theory
of differential equations and allied fields of mathematics: integral
equations, the calculus of variations, approximate and numerical
methods. With the advent of quantum physics, the range of
mathematical tools expanded considerably through the use of
the theory of operators, the theory of generalized functions, the
theory of functions of complex variables, topological and alge-
braic methods, computational mathematics and computers. All
these theories were pressed into service in addition to the tra-
ditional tools of mathematics. This intensive interaction of
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VI Preface

theoretical physics and mathematics gradually brought to the
fore a new domain, that of modern mathematical physics.

To summarize, then: modern mathematical physics makes
extensive use of the latest attainments of mathematics, one of
which is the theory of generalized functions. The present mono-
graph is devoted to a brief exposition of the fundamentals of that
theory and of certain of its applications to mathematical physics.

At the end of the 1920’s Paul Dirac (see Dirac [3]) introduced
for the first time in his quantum mechanical studies the so-called
delta function (8 function), which has the following properties:

8@ =0, 240, [8@Wo@dr=0¢(0), 9€C. ()

It was soon pointed out by mathematicians that from the purely
mathematical point of view the definition is meaningless. It was
of course clear to Dirac himself that the 8§ function is not a func-
tion in the classical meaning and, what is important, it operates
as an operator (more precisely, as a functional) that relates, via
formula (), to each continuous function ¢ a number @ (0),
which is its value at the point 0. It required quite a few years
and the efforts of many mathematicians$ in order to find a mathe-
matically proper definition of the delta function, of its derivatives
and, generally, of a generalized function.

The foundations of the mathematical theory of generalized
functions were laid by the Soviet mathematician S.L. Sobolev
in 1936 (see Sobolev [1]) when he successfully applied gener-
alized functions to a study of the Cauchy problem for hyperbolic
equations. After World War II, the French mathematician
L. Schwartz attempted, on the basis of an earlier created theory
of linear locally convex topological spaces®, a systematic con-
struction of a theory of generalized functions and explained it in
his well-known monograph entitled Théorie des distributions [1]
(1950-51). From then on the theory of generalized functions was
developed intensively by many mathematicians. This precipitate
development of the theory of generalized functions received its
main stimulus from the requirements of mathematical and theo-
retical physics, in particular, the theory of differential equations
and quantum physics. At the present time, the theory of gener-
alized functions has advanced substantially and has found numer-
ous applications in physics and mathematics, and more and more
is becoming a workaday tool of the physicist, mathematician
and engineer §5. Generalized functions possess a number of remark-

§ See the pioneering works of Bochner [1] and Hadamard [1].
§§ See Dieudonné and Schwartz [1].
88§ See JArsac [1], Bogoliubov,j Logunov and Todorov [1], Bogoliubov,
Medvedev and Polivanov [1], Bogoliubov and Shirkov [1), Bremermann [1],
Ehrenpreis [1], Garding [1], Garsoux [1], Gelfand and Shilov [1], Gelfand
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able properties that extend the capabilities of classical mathe-
matical analysis; for example, any generalized function turns
out to be infinitely differentiable (in the generalized meaning),
convergent series of generalized functions may be differentiated
termwise an infinite number of times, there always exists the
Fourier transform of a generalized function, and so on. For this
reason, the use of generalized function techniques substantially
expands the range of problems that can he tackled and leads to
appreciable simplifications that make elementary operations
automatic.

The present monograph is an expanded version of a course of
lectures that the author has been delivering to students, post-
graduates, and associates of the Moscow Physics and Technology
Institute and the Steklov Mathematical Institute.

I take this opportunity to thank all my associates for their
constructive criticism that has helped to improve the presentation.
In particular I wish to thank my pupils Yu. N. Drozhzhinov,
V.V. Zharinov and R. Kh. Galeev.

The first Russian edition of this book was sold out in a short
time. In preparing the second edition, I have taken into account
a number of remarks, and part of the material has been reworked
and supplemented. Inaccuracies and misprints have been correct-
ed. Significant changes have been introduced into the portion
devoted to the theory of holomorphic functions with nonnegative
imaginary part in tubular regions over acute cones (Secs. 16-18).
This part embodies new results.

V. S. Viadimirov

and Vilenkin [1], Hérmander [1], Jost [1], Malgrange [1], Palamodov [1],
Reed and Simon [1], Schwartz [1, 2], Sebolev [1, 2], Streater and Wightman
[1], Treves [1], Vladimirov [1, 2], Zemanian [1}, and others,
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Symbols and Definitions

0.4 We denote the points of an n-dimensional real space

R*by =z, y, E ... 2= (x, %3, . . ., ). The points of an
n-dimensional complex space C" are given as z, {, .. .; z =
= (24, 29, « .+ y %y) = & + iy; = = Rez is the real part of z

and y = I'm z is the imaginary part of z, z = z — iy is the com-
plex conjugate of z. In the usual manner we introduce in R"
and C" the scalar products

@, ) =z&+ ...+ 2k @GO =20+ + 200
and the norms (lengths)
lz) =V {(z,x) =i+ ... +22)12,
12) =V (21, 8y = (|22 + - . . +]2,|2)V2.

0.2 Open sets in R" are_denoted by O, O', ...; 90 is the
boundary of @, or 90 = O~ O. We will say that the set 4 is
compact in the open set O (or is strictly contained in O) if A is
bounded and its closure A lies in O; we then write A € O.

The following designations are used: U (z,; R) is an open ball
of radius R with centre at the point xy; S (zq; R) = U (zy; R)
is a sphere of radius R with centre at the point z,; U p = U (0; R),
Sz =S8 (@0; R).

We use A (4, B) to denote the distance between the sets A and
B in R™, that is,

A(4,B)= inf |z—y]|.
XEA, yEB

We use A% to denote the e-neighbourhood of a set A, A& =
= A + U, (Fig. 1a). If O is an open set, then O, designates
the set of those points of © which are separated from d© by
a distance greater than & (Fig. 1b):

Oc.=lz:2€0, A (z,00)>¢].

We use int 4 to denote the set of interior points of the set A.

The characteristic function of a set A is the function 6, ()
which is equal to 1 when z € A and is equal to 0 when z € 4.
The characteristic function Oy ) (z) of the semiaxis 23>0 is
called the Heaviside unit function and is denoted 0 (z) (Fig. 2):

0(x) =0, z <0, 0@ =1, ==0.
We write 0, () =0 (z;) ... 0 (z).
1



2 Symbols and Definitions

The set A is said to be conver if for any points 2’ and z” in 4
the line segment joining them, iz’ + (1 — &) 2", 01,
lies entirely in A.

We will use ch 4 to denote the convex hull of a set A.

(b)

Figure 1

A real function f (z) <<+ oo is said to be conpex on the set A
if for any points ' and z” in 4 such that the line segment tz’ -
4+ (1 — t) 2" joining them lies entirely in A the following in-
equality holds (Fig. 2b):

flid + (4 =)z @)+ (1 =) f (="
The function f (z) is said to be concave if the function —f (x)
is convex.

0.3 The Lebesgue integral of a function f over an open set O
is given as

Sf(x)dx, S,]‘(x) dz = Sf(x) dz.
O R7

The collection of all (complex-valued, measurable) functions f
specified on © for which the norm

[fir@ra]”  t<p<o,
N llgp@)= < O
vrai sup |f(2)], p=co,
xe(@ .
is finite will be denoted as £7(O), 1< pL o0; we write
=1l llgyrny, LP(R")=ZLP.

If € £ (C’) for any G’ € €, then f is said to be p-locally
summable in O (for p = 1, we say it is locally summable in ©).
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The collection of p-locally summable functions in © is denoted
*Z{)oc (G)s :ffoc [Rn) = x{?oc- .

A measurable function is said to be firite in O if it vanishes
almost everywhere outside a certain &' € ©O. The set of all
functions in ZP(C) that are finite in O is denoted £} (C).

8(x)\

1

(2)

(&) } | |
I !
} r |
| | i
| i a
i I N
X ax+(1-)x x”
Figure 2
0.4 Let @ = (a,, a,, ..., a,) be a multi-index, that is to

say its components o; are nonnegative integers. We have the
following symbholism:

al=ala,l...a,!, T =gHxde . .. 2%n,

()= () (B)- o (B) = rtr

| =a; +as-+...a,.

Let D=(Dy, Dy, ..., Dy), Dy=-2— j=1,2,...,n. Then
7

a
et}
D%f (1) — 8™ (x)
1) 0zT19z32 . .. 9r%n
It may sometimes happen that a — (@, a,, .. ., a,) will be

used to denote a multi-index with components of any sign: o; %O.
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0.5 We use C" (€) to denote the set of all functions f (z)
that are continucus in © together with all derivatives Def ().
e |<k; C~(C) is the collection of all functions infinitely
differentiable in ©. The set of all functions f (z) in C* (€) for
which all derivatives D%f (), | |<ic, admit continuous exten-
sion onto & will be denoted by C*(®). We introduce the norm
in C* (O) for k << oo via the formula
sup | D*f (z)].

xeQ
lal<k_ _

We also write € (€) = €? (C), € (C) = ¢ (F).

The support of a function f (z) continuous in © is the closure,
in O, of those points where f (z) 5= 0; the support of f is denoted
by supp /. If supp f € ©, then f is finite in © (compare with
Sec. 0.3).

We denote the collection of functions, finite in O, of the class
CH(C) by CrH(C); C, (O) = €3 (€). Finally, the set of all
functions of the class C*(€) that vanish on 9O together with
all derivatives up to order k& inclusive will be denoted by Ck (O);
€, (O) = €Y (C). We write C*"(R") =C% C*(R") = Ck;
CyR™ = C%, Cy = C} (Ck is the set of functions in C* that
vanish at infinity together with all their derivatives up to order k
inclusive).

0.6 Symbolism: (a, b) is a bilinear form (linear in a and b
separately); (a, b) is a linear-antilinear form (linear in a and
antilinear in b):

{@ay+ bay, Aby + pb,)

=ak (ay, by) + aﬁ(an by) 4 ﬁx@lz, by) + ﬁ!r(am by);
n/2
o, = 5 ds=l,2—?n~—//2) is the surface area of a unit sphere in R";

Je]=1
AT is the transpose of the matrix A4.
We denote the uniform convergence of a sequence of fune-
tions, {p, ()}, to a function @(z) on a set 4 thus:

Il f Hch(@) =

xEA
Pn(2)=¢(2), n->o0;
xER" x
if A=R", then instead of =>we write =>.

The sections are numbered in a single sequence. Each section
is made up of subsections, the numbers of which are included
in any reference to a section. Formulas are numbered separately in
each subsection; they contain the number of the formula and
of the subsection. When reference is made to a formula in a
different section. the number of that section is also given.



Chapter 1

Generalized Functions and Their Properties

The exposition of the theory of generalized functions given in
this chapter is tailored to the needs of theoretical and mathe-
matical physics.

1 Basic and Generalized Functions

1.1 Introduction A generalized function is a generaliza-
tion of the classical notion of a function. On the one hand, this
generalization permits expressing in a mathematically proper
form such idealized concepts as the density of a material point,
the density of a point charge or dipole, the spatial density of a
simple or double layer, the intensity of an instantaneous point
source, the magnitude of an instantaneous force applied to a point,
and so forth. On the other hand, the notion of a generalized func-
tion can reflect the fact that in reality one cannot measure the
value of a physical quantity at a point but can only measure
the mean values within sufficiently small neighbourhoods of the
point and then proclaim the limit of the sequence of those mean
values as the value of the physical quantity at the given point.

This can be explained by attempting to determine the density
set up by a material point of mass 1. Assume that the point is
the origin of coordinates. In order to determine the density, we
distribute (or, as one often says, smear) the unit mass uniformly
inside a sphere of radius e centered at 0. We then obtain the mean
density f, (z) that is equal (see Fig. 3) to

if |z e,
fe (x)z ?nas I ]<

0 if |z} > .
We are interested in the density at ¢ = 4-0. To begin with, for

the desired density (which we denote by 8 (z)) we take the point

limit of the sequence of mean densities f, (z) as € — 40, that
is, the function

+ 0if 2=0,

6(z)={ 0 ifz=<0. : (1.1
2—0172 5



6 Generalized Functions and Their Properties

Of the density it is natural to require that the integral of the
density over the entire space yield the total mass of substance, or

(8 (2)dz=1. (1.2)

But for the function & (z) defined by (1.1), 5 8 (z) dz = 0. This

means that the function does not restore the mass (it does not
satisfy the requirement (1.2)) and therefore cannot be taken as

IR

| f

{ |
T e 0
I i | |
| i | I
: j | ]
| i ! L

0 3 2¢ X

Figure 3

the desired mass. Thus the point limit of a sequence of mean den-
sities fo (x) is unsuitable for our purposes. What is the way out?

Let us now find a somewhat different limit of the sequence of
mean densities f, (z), the so-called weak limit. It will readily be
seen that for any continuous function ¢ (z)

lim { 7, (2) ¢ () dz= o (0). (1.3)
e—»+0J

Formula (1.3) states that the weak limit of a sequence of functions
fe (), € > 40, is a functional ¢ (0) (and not a function!) that
relates to every continuous function ¢ (z) a number ¢ (0), which
is its value at the point z = 0. It is this functional that we take
for our sought-for density 8 (z). And this is the famous delta func-
tion of Dirac. So now we can write

fol@) 58(z), e -0,

and we understand by this the limiting relation (1.3). The value
of the functional § on the function ¢ (the number ¢ (0)) will be

denoted thus:

6, 9) =9 (0). (1.4)
This equality yields the exact meaning of formula (+) (see Pref-
ace). The role of the “integral” S‘ 8 (2) ¢ (z) dz is played here
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by the quantity (8, ¢), which is the value of the functional §
on the function ¢.

Let us now check to see that the functional § restores the total
mass. Indeed, as we have just said, the role of the “integral”

S 8 (z) dz is handled by the quantity (6, 1), which, by virtue

of (1.4), is equal to the value of the function identically equal
to 1 at the point x = 0, that is, (6, 1) = 1.
Also, generally, if masses p, are concentrated at distinct points

xp, k=1, 2, ..., N, then the density that corresponds to such
a mass distribution should be regarded as equal to
D) a8 (z—ay). (1.5)
1<h<N

The expression (1.5) is a linear functional that associates with
each continuous function ¢ (z) a number

D) br @ (2n).
1<hgN
Thus, the density corresponding to a point distribution of
masses cannot be described within the framework of the classical
concept of a function; to describe it requires resorting to entities
of a more general mathematical nature, linear (continuous) func-
tionals.

1.2 The space of basic functions D (C) Inj the case of the
delta function we have already seen that it is determined by
means of continuous functions as a linear (continuous) functional
on those functions. Continuous functions are said to be basic
functions for the delta function. It is this viewpoint that serves
as the basis for defining an arbitrary generalized function as a
continuous linear functional on a collection of sufficiently “good”
so-called basic functions. Clearly, the smaller the set of basie
functions, the more continuous linear functionals there are on it.
On the other hand, the supply of basic functions should be suf-
ficiently large. In this subsection we introduce the important
space of basic functions & (C) for any open set O — R™.

Included in the set of basic functions & (C) are all finite func-
tions infinitely differentiable in C; Z (€) = €% (€) (see Sec. 0.5).
We define convergence in 9 (€) as follows. A sequence of func-
tions @;, @y, . .. in P (O) converges to the function ¢ (in F (O))
if there exists a set €’ € O such that supp ¢, = C’ and for
every o :

xe©
D* @y (z) = Z% ¢ (z), k— oo,
We then write: ¢, - ¢, k — oo in & (C).
2*
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A linear set 2 (0O) equipped with convergence is called the
space of basic functions 2 (O), and we have the following symbol-
ism: & = D[R", D (s, b) = D ((a, b)). t

Clearly, if O, = O,, then also Z(0,) = Z(0O,), and from
the convergence in 2 (O,) there follows convergence in Z (O,).

f
W (%)

e (x)

-2 —€ 0 3 2 x
Figure 4

An instance of a nonzero basic function is the “cap” in Fig. 4:
82

we(z) = { Coe & FF 2] L&,
0, lz] > e.

In what follows, the function o, will play the part of an aver-
aging function; and so we shall regard the constant C, as such that

ot
50),, (z) dz—=1, that is, ces"j e TEEgE_ g
lel<<i
The following lemma yields other instances of basic functions.

Lemma For any set A and any number & > 0 there is a function
Ne € C~ such that

N (2) =1, SCEAG; e () =0, x-E_A‘“;
0<n ()<, | DN ()| < Kqe 1o,

Proof. Let 0 aze be a characteristic function of the set 42¢ (see
Sec. 0.2). Then the function

me (@)= 0.2 @) o e—v)dy= [ o.(z—y)dy,
. A2e
where o, is the “cap”, has the required properties. The proof
is complete.



