Non-Lmear Fracture

Recent Advances



Non-Linear Fracture

Recent Advances

edited by
W. G. KNAUSS and A. J. ROSAKIS

- Graduate Aeronautical Laboratories,
Caltech, Pasadena, Calif., U.S.A.

Reprinted from International Journal of Fracture, Vol. 42, Nos. 1-4 (1990)

-

-

~ Kluwer Academic Publishers
* * ‘Dordrecht / Boston / London




Library of Congress Cataloging-in-Publication Data

ISBN 07923-0658-9

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Kluwer Academic Publishers incorporates

the publishing programmes of
D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press.

Sold and distributed in the U.S.A. and Tagada
by Kluwer Academic Publishers, -
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed

by Kluwer Academic Publishers Group,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved
© 1990 Kluwer Acadgmic Publishers

No part of the material protectiid by this copyright-aotioemed’ be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying, recording or by any informa-
tion storage and retrieval system, without written permission from the copyright owners.

Printed in the Netheriands



$
1

!

vii

Foreword

From time to time the /nternational Journal of Fracture has presented special matters thought to be
of interest to its readers. In previous issues, for example, Dr. H.W. Liu as Guest Editor assembled a

. series of review papers dealing with fatigue processes and characteristics in metals and non-metals

(December 1980 and April 1981). Five years ago Guest Editor W.G. Knauss collected works dealing
with dynamic fracture (March and April 1985). Continuing this policy, Dr. W.G. Knauss and Dr. A.J.
Rosakis of the California Institute of Technology as Guest Editors have now organized an extensive
set of papers concerning the influence of non-linear effects upon the mechanics of the fracture
process.

This collection is based upon contributions to a relatively small international Symposium on Non-
Linear Fracture Mechanics held under the auspices of the International Union of Theoretical and
Applied Mechanics (IUTAM) and convened at the California Institute of Technology in March 1988.
It should be noted that although the description of non-linear fracture inherently encompasses a
strong material science component, this aspect is not heavily emphasized in the ensuing papers due to

the intentional focus upon mechanics.

Volume 42 of the International Journal of Fracture will therefore, in successive issues, deal
respectively with topics in (1) Damage, (2) Interfaces and Creep, (3) Time Dependence, and
(4) Continuum Plasticity. On behalf of the edifors and publishers, I wish to €Xpress our appreciation
to Dr. Knauss, Dr. Rosakis, and their colleagues for their collective efforts.

M.L. WILLIAMS
Editor-in-Chief

Pittsburgh, Pennsylvania
January 1990



Preface

The analysis of material failure has traditionaily followed two investigative paths: one was concerned
‘with continuum analyses at the macroscopic size scale and the other with material aspects at the
microscopic level. The former attempted to develop a predictive framcwork for structural failure
through continuum concepts in terms of states of ultimate stress or strain, while the lauer aimed at
better understanding the physical properues of materials nceded by the continuum analyst for failure
prediction as well as clarifying lhe microscopic phenomena controlling macroscopic fractures, e.g.
dislocations, slip, intergranular and interfacial separations.

“A major contributiop to failure predlcuon was the recognition that A.A. Griffith’s flaw concepts
had wider applicability thun to strictly brittle solids. This realization evolved, via M.L. Williams’ and
G.R. Irwin’s contributions, to what. has become known as “linearly clastic fracture mechanics”. This
discipline of solid mechanics has offered a momentous contribution to our ability of coping effec-
tively with a large class of fracture problems. Tt provides a single principal parameter for characteriz-
ing the vusct of fracture, the stress intensity factor, with attendant crack tip characteristics such as the
energy rclease rate concept and the idea of stress field autonomy at the crack front. In particular, the
laiter concept allowed the ‘'scaling connection between laboratory fracture tests and full scale service
structures, a feature of the theory that is hkely to survive only into a limited set of non- -linear fracture
formulations.

With time and through greater dnalyucal ﬂcxxbnhty via numerical computations it became also
1ncrcas1ngly clear that linearly elastic description of fracture could not do justice to the ldrge variety.
of materlals of interest in engineering. Accordmgly, the last decade has seen growing efforts at
mcorporaung more detailedmicrostfuctural material description into continuum formulations of
crack growth problems. Such developmems make primarily increased use of non-linear, macroscopic
constitutive descriptions in the form of continuum plasticity, raie and temperature sensitivity, and
with more complicated phenomena such as stress-induced phase transformations, for example.
Although fracture problems are "still mostly based on small strain deformation fields, relevant studies
begin to recognize that large strains and finite rotations in the crack lip vicinity are necded in a
kinematically consistent and “fully” non- lmcar framework. L

Beyond the more macroscopic consnderauons of material constitution a trend is now dcvcl()pmg o
describe in greater detail the failure processes at the microscopic level around the crack tp in terms
of so-called “damage”; these processes include phase separations, slip, and injergranular microcracks
that transform into growing voids. Allhoul,h these characteristics can occur away from the crack tip,
they are usually assocnaled with the process zone, that is, in the small region where the actual fracture
process takes place.

The discipline of non-linear fracture mechanics which incorporates these matcnal aspecls has as its
primary goal a more physics-based continuum formulation of crack tip problems than the linear
theory could provide. However, beyond this immediate differentiation there is implicit in this new
development an attempt to describe the complete material response in its transition from the con-
tinuum to the damaged and failing material. One thus.aims at describing the complete fracture
process in terms of material characterization and continuum fields without recourse to “arbitrary”
fracture criteria. The goal is Lhus to replace the stress intensity factor or the fracture energy as the
global fracture parameter(s) of lincar fracture mechanics by a local matcrial intrinsic parameter.



If such a formulation were possible fracture mechanics would have passed, historically, through
three stages of development: starting from the classical failure analysis of continua during the first
quarter of this century which was based on logal (principal) stress or strain criteria, the next phase is
identified with linearly elastic fracture mechanics in which stress singularity characterization induced
by the crack geometry dominated the failure description. We are then presently moving into a third
phase, distinguished by a fully non-linear description of the material and the failure process, and
wherein the crack or flaw provides only the high stress or strain field gradients within which a loeal
material-based failure criterion can be satisfied at the crack tip.

That sich questions cannot be addressed without detailed and careful experimental work is clear.
Indeed, experimental work is pivotal in all stages of such developments related to (1) constitutive
formulations, (2) their application in fracture problems and (3) the elucidation of the physical
processes that serve to augment our notions of how the fracture process develops. It is simultaneonsly
clear that, in order to deal with the increased consideration of detail, such experimental work will also
have to deal with ever increasing spatial and temporal resolution of physical quantities in experi-
ments. In this sense the experimental mechanics of non-linear fracture problems will have to move
closer to the domain of the mate{ml scientist and encompass the emerging discipline that is often
called “the mechanics of materials,”

The symposium content has been grouped loosely into four sections under the headings of
Damage, Interfaces and Creep, Time Dependence, and Continuum Plasticity. While the grouping
could not be made altogether precise, we have attempted to represent the main thrust of the contribu-
tions in a coherent setting.

Damage occurs in different forms: in pure polycrystalline solids a major contribution to the
deformation can arise from slip formation within grains as well as from the development of inter-
granular cracks. Moreover, inclusions can precipitate interfacial separations that develop into voids.
In polymers the generation of micro-flaws in the form of crazes and of submicron discontinuities
provides a similar damage profile. These damage phenomena are connected to clearly identifiable
processes, and considerations along these lines are represented in the first five of the papers. There is,
however, an alternate and less physics-specific view which derives basically from a continuum
description in the form of a damage function without necessarily specifying an accompanying
physical process. In this approach to constitutive description of damaged materials one postulates a
(possibly tensorial) damage function which accounts for progressive softening of the material with
strain or time. The evaluation of this function needs to be accomplished essentially in terms of
macroscopically measured changes in material rigidity, as illustrated in several contributions.

Interfacial separation and creep play possibly interactive roles in macroscopic material response.,
Unbonding of inclusions is an importantaspect of failure behavior of the emerging composite
materials. It appears that the somewhat disturbing oscillatory character of the asympitotic stress and
. displacement fields for interface cracks in linearized elasticity is less troublesome when nonlinear
material characteristics and large deformations operate, Several contributions address this issue.
Apother issue intimately coupled with damage development is the occurence of creep. This
phenomenon may be the result of intrinsic time-dependent processes at the atomic level, but it is also
occasioned by the time-dependent development of microscopic damage. Incorporation of such
damage evolution generates non-linear time or rate-dependent constitutive behavior; damage-induced
creep can again be represented either in terms of physically identified mechanisms or in terms of a
phenomenological damage function. Several contributions examine the effect of this type of material
description on the stress distribution around the tips of cracks. In this context it is not clear what
differences separate non-linearly viscoelastic and the traditional creep representations of material
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behavior, except primarily historical associations.

Another group of papers deals with non-linear effects on dynamic crack propagation, addressing
both stress wave loading on stationary cracks as well as rapidly propagating cracks (up to 60% of the
Rayleigh wave speed). While major advances in the past contributed analytical (linearly) elas-
todynamic solutions to this topic, the present papers emphasize uhderstanding the influence and
interplay of inertia, plasticity, rate sensitivity and adiabatic heat generation on the deformation field
around initiating, running and arresting crack tips. These problem parameters control whether -
fracture localized at the crack tip favors separation through void growth or whether it is dominated by
low energy cleavage. This topic is of considerable interest, because such material behavior would
establish a main source for different toughness measures experienced in static versus dynamic
situations. Answers to this and related questions require extensive experimental work in order to
elucidate the true physical situation before proper analytical modelling can be achieved. In fact,
analytical studies in dynamic fracture have benefitted from close interaction with experimental
investigation.

To round out the presentation, a sequence of papers addresses non-linear continuum description of
the near tip deformations, primarily in terms of asymptotic solutions based on plasticity for stationary
and quasi-statically propagating cracks. In spite of considerable mathematical difficulties associated
with analytical solutions for (incremental) plasticity formulations, progress is being made in several
areas. These include use of anisotropic plasticity for cracks in single crystals as well as crack growth
under large scale yielding. An essential ingredient in these studies is the coupling of analytical
_developments with large scale computational efforts, as well as experimental progress in addressing
the near tip deformation field in the presence of plasticity.

W.G. KNAUSS
A.J]. ROSAKIS
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Finite element analysis of void growth in
‘elastic-plastic materials

R.M. McMEEKING and C.L. HOM
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Abstract. Three-dimensional finite element computations has o been carried out for the growth of initially spherical
voids in periodic cubic arrays and for initially spherical void~ ahead of a blunting mode 1 plane strain crack tip.
The numerical method is based on finite strain theory and the (o iputations are three-dimensional. The void cubic
arrays are subjected to macroscopically uniform fields of uniaxia! rension, pure shear and high maxlal stress. The
macroscopic stress-strain behavior and the change in void volui.: were obtained for two initial void volume
fractions. The calculations show that void shape. void interaction: and loss of load carrymg capacity depend
strongly on the triaxiality of the stress field. The results of the finite element computahon were compared with
several dilatant plasticity continuum models for porous materials. None of the models agrees completely with the
finite element calculations. Agreement of the finite element results with any particular constitutive model depended
on the level of macroscopic strain and the triaxiality of the remote uniform stress field. ‘For the problem of the
initial spherical voids dircctly ahead of a blunting mode | plane strain crack tip. eonditions of small scale yielding
were assumed. The near tip stress and deformation fields were obtained for different void=size-to- -spacing ratios
for perfectly plastic materials. The calculations show that the holes spread towards the crack tip and towards each
other at a faster rate than they clongate in the tensile direction. The computed void growth rates are Lompared
\\llh previous models for void growth.

‘1. Void growth ,
For progress in understanding both the phenomcnon of ductile 1rdcture and the process of
non-isostatic pressing. it is desirable to have models for the growth/collapse of voids in
arbitrary states of stress. McClintock [1] developed growth predictions for cylindrical voids,
while later Rice and Tracey [2] obtained results for sphcrical holes by minifnizing a fuhttional
of the velocity field. The model for spherical holes was later 1mproved by Budiansky,
Hutchirison and Slutsky [3]. The solutions show the strong effect of stress triaxiality on the
rate of growth. In the latter two cases. the analysis was carried out for a smgle void | in an
infinite matrix and so the results are valid only for & porosity which is a small fractlon of the
whole. On the other hand. Needleman {4] and T\engd ird [5] treated. cylmdncal holes in a
square array subject to & macr oscoplcally unjform state ol stress. They used the ﬂmte eleme\nt
‘method to obtain the solutions. Interactions bétween voids are apparent m the velocny fields
and the local stress distributions. The coupling is probably stronger in these two- d;mens,mndl
problems than in the interactions between initially spherical voids. in ap ;me,mpt to underswld
such three-dimensional effects, Andersson [6 and Tyvergaard. [71 usegi ghe ﬁmtg elcmmt
method to analyze the growth of a spherical void in 2 high triaxial stress state mmtmmui
to axially symmetric deformation in a cylinder. Because of the constrax t, the mmlud
interaction between netghbormg voxds is stlll strong. Hancock [8) hﬂ’s usbd Gmg alcgl‘u AT
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of axnsymmetnc deformations to study void-void interactions and observed that there are
strong couplings between voids on the 45.degree planes.

Anoﬂfer approa " to modelling void growth extends the Rice and Tracey approach by
using the same method applied to spherical cells containing spherical holes. This technique
was used by Gurson [9, 10] to study the behavior of voids in high volume fractions for a-
variety of states of stress. At low volume fractions the results agree with those of Rice and
Tracey [2]. The rate of dilatation of the voids was determined by Gurson [9, 10] and
presented in indirect form because the main purpose was to obtain a yield condition and an
associated flow law for a macroscopic composite containing a volume fraction of spherical
voids. Modifications of these laws were developed by Tvergaard [5, 7] to improve their
agreement with calculations of bifurcation into shear banding in square arrays of cylindrical
holes and axisymmetric spherical holes.

There is little work on comparing these constitutive laws for porous ductile materials with
experimental data, Bourcier, Koss, Smelser, and Richmond [11] have shown that partially
densified powder metallurgy specimens of Ti and Ti-6Al-4V have lower flow stresses than
predicted by the models of Gurson [9, 10] and Tvergaard [5, 7]. Similarly, Richmond [12] has
data for iron confirming this overprediction. Based on these data for Ti, Ti-6A1-4V and iron
and on considerations of yielding in shear of a material containing a cubic array of spherical

‘voids, Richmond and Smelser [13] have devised an alternative yield function and a corre-

sponding flow law which agrees with the experimental data.

In this paper, the behavior of initially spherical holes in cubic arrays analyzed by a large
deformation finite element technique is reviewed. This work follows on from the iii.tial effort
of Harren [14] and was carried out by Hom and McMeeking [15). A representative fraction
of a unit cell was treated with appropriate symmetry and periodic conditions to produce
macroscopically homogeneous deformation. The full three-dimensional interactions between
voids were accounted for, and a moderate and high volume fraction of the voids were
studied. Simple shear, uniaxial tension and a state of high triaxiality were applied in the
calculations. The results are compared with the models of Gurson [9, 10, Tvergaard [5, 7]
and Richmond and Smelser [13] in an attempt to assess which conforms most closely to the
finite element calculations.

2. Problem formulation for cubic arfay of voids

A cubic array of initially spherical voids in an infinite elastic-plastic body was considered.
The void sizes and spacings were chosen to give two initial porosities of 6.5 and 0.82 percent.
The material was originally stress free and monotonically increasing principal stresses were
applied to the infinite body in such a manner that they were aligned with the axes of the cubic
array. The states of stress were macroscopically homogeneous and accounted for pure shear,
uniaxial tension and an axisymmetric state of high triaxiality in which the lateral stresses arg
70 percent of the tensxle axial stress.

The matrix material surrounding the voids was elastically isotropic subject to yielding
governed by the Von Mises criterion with g, taken as the true flow stress in uniaxial tension.
Isotroplc strain hardening was used with a power law form given by

9 'N_ 9\ _ 3Ge*r 4_
(”0) ("0) T o M




Finite element analysis of void growth in elastic-plastic materials 3

Fig. 1. Typical finite element mesh used to model the one-sixteenth cell of the void-matrix aggregate.

where ¢, is the initial yield stress, G is the elastic shear modulus and &/ is the tensile equivalent
plastic strain. ' ’

Because of the periodic arragxgemeni of the voids, it was sufficient to consider only a single
unit cell consisting of a cube containing one void. Each cell deforms into a right parallelopiped
due to imposed velocities on the boundary. The evolving shape was determined by the state
of stress: The technique of Needleman [4] was used to ensure the correct state of stress. This -
technique consists of adjusting the uniform normal displacement increments of each face of
the unit cell to ensure that the average true stress on each face maintains the desired level.
However, a reduction of the size of the problem was possible due to symmetries. In the
axisymmetric states of uniaxial stress and high triaxiality it was necessary to solve the .
problem in only one-sixteenth of the cubic unit cell {15]. In pure shear, the one-sixteenth
segment and its neighbor across the diagonal plane must be used. For more detail’see [15),
where the same results are reported in greater detail. ey

Large strains and rotations are allowed for through the finite deformation formulation of
McMeeking and Rice [16] as modified and implemented in the ABAQUS [17] finite element
code. As such, the method is similar to that developed by Needleman [18] and Osias and
Swedlow [19]. The finite element mesh used for the axisymmetric problems is shown in Fig.
1, whereas the mesh for pure shear was simply double that shown. The illustrated mesh has
135 twenty noded isoparametric brick elements and 1084 nodes. The dilatation in the
element was represented by extra degrees of freedom and the model was freed from locking
overconstrairt by a technique based on the method of Nagtegaal, Parks and Rice [20].

The calculations were carried out incrementally up to macroscopic true strains of the order
0.7 for the uniaxial tension state and 0.3 for the pure shear state and the high triaxial stress
state. The macroscopic true strain is defined to be E; = In (///,) where [, is the undeformed
length of the vertical edge of the unit cell shown in Fig. 1 and /s the current length of that
edge. Typically, 50 increments were necessary to obtain macroscopic true strains of the order
0.7 for the uniaxial tension state and 0.3 for the pure shear state and the high triaxial stress
state.

3. Results for growth of voids

The finite element calculations were carried out for a power-law hardening matrix material
with E/e, = 200 and v = 0.3 where E is Young’s modulus and v is Poisson’s ratio. The
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initially spherical void elongates i the tensile direetion
- with increasing. strain.. After 3 wensile:truesstraifi of 0.5, the holes are long and nafrow and
the ligaments between neighbering: voids are like columns with a cufvilinieas cross shefe for
the sectien,. Figure 2, a contour-plot of the equivalent plastic strain for f; = 6.5 percent.
shows that the ,p],afslie deformation is con¢entrated: in these ligaments. However. little orno
Void interaction ogeurs between neighboring voids in the cubic array under uriaxial tension

* [15]. In this. way. the behavior of the initially spherical voids differ greatly ffém that predicted

by Needleman [4].for ylindrical voids i square cells under plane striin terision: ‘Neédletian .
found thatafter a stage of transversecontraction; the cylindrical holeg start to' growlaterally
with high strains developing-in the ligaments; ‘This-change in behavior'in the two-dinefisional
problem occurs at a moderate ‘strain of 0.3 Therefore. it seems. that -the interaction’ of
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. -In the case of pure shear, the voids clongate in the tensile direction and -contract in»’the
compressive..direction, but the void volume fraction remains aliost exuctly constant
thraughout the whole lpad history. Figure 3:is a contour plot of & for f. = 6.5 percent. In
this casc, the maximum effective plastic strain occurs between neighboring voids in the
princip © <hear plane. Unlike uniaxial tension, this maximum does not occur at the void’s’
surface or in the ligament between transverse neighboring voids. Instead, the m.aximl‘lm

occurs at the intersection of shear band like features extending from void to void.
In contrast to the low triaxial stress states, when there is high trjax}i;_tlbzt,,\‘,k the voids

dilate substantially wad siidhg véghbot Tnferadtion occurs at relatively low’ straing. F
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Fig. 3. A contour plot of the equivalent plastic strain & for pure shear at a true strain £, = 0.25 with /, = 6.5%
and N = 0.1, ’

!

Fig. 4. A contour plot of the equivalent plastic strain & for the high triaxial stress state at true strain E;, = 0.25
with f, = 6.5% and N = 0.1. )

Jfi = 0.82 percent the void’s volume increases steadily and the hole remains roughly spherical
in shape. For the higher initial void volume fraction Ji = 6.5 percent, the strength of void
interaction is more apparent. At a tensile strain of 0.2 the void has started to bulge out
towards its transverse neighbor. Figure 4, a contour plot of & for f; = 6.5 per cent, shows
that the plastic strains are concentrated in the ligament and are significantly larger than for
the low triaxial cases at the same nominal strain. The ligament between voids transverse-to
the maximum principal stress exhibits necking behavior which indicates that the voids are
beginning to interact:strongly. '
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Fig. 5. Limit loads predicted by finite element analysis and yield surfaces of the Gur~on, Tvergaard and Richmond
models.

3.2. Initial yield predictions

The results of the finite element calculation can be used also to evaluate the accuracy of the
existing continuum models for dilatant plastic behavior caused by the presence of voids.
One method of comparison is to examine the yield point predicted by the finite element
calculations and the Gurson [9, 10}, Tvergaard [5, 7] and Richmond [13] models for the three
loading conditions. The three models are described together by Hom and McMeeking [15].
The yield point in the finite element calculations is estimated to be at the region of rapid
reduction of the tangent stiffness in the load deflection curves, In Fig. 5, the yield surfaces
of the continuum models and the yield points predicted by the finite element analysis are
plotted in the plane of tensile equivalent stress versus hydrostatic stress. For the low triaxial
stress states of pure shear and uniaxial tension, the yield points of the finite element
calculations agree best with the Richmond [13] model. This result is interesting since the
Richmond model is based on the concept of yielding being concentrated on shear bands at
45 deg to the principal stress directions and is more persuasive in the case of pure shear.

For the high triaxial stress state, the finite element calculations agree better with the

» Tvergaard (5, 7] and Richmond [13] models. This behavior is not surprising since Tvergaard’s
- modification of Gurson’s {9, 10] equation is based partially on axisymmetric finite element

results for a high triaxial stress state. In addition, Richmond and Smelser [13] chose their

 modification of Gurson’s [9, 10] law to agree with it in purely hydrostatic stress where both

b,

are in accord with the Torre {21] solution.

3.3. Plastic flow behavior

In addition to the yield point calculation, the stress-strain curves of the finite element
computations have been used for comparison with the plastic flow characteristics of the
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Fig. 6. Comparison of the stress-strain behavior of the finite element analysis and the continuum models for
uniaxial tension, with an initial void volume fraction Ji = 6.5% and a hardening coefficient N = 0.1.

continuum models. The results of this comparison depend strongly on the macroscopic stress
state. In the low triaxiality cases, where the void volume remains roughly constant, the
stress—strain curves of the finite element calculation become relatively stiff at high strains
compared to the behavior at low strain and further loss in the material’s load carrying
capacity due to void growth is negligible. However for the high triaxiality case, rapid void
growth causes a substantial decay in the load-deflection curve of the finite element calculation.
It was found that this overall type of behavior was not completely described by any
particular continuum model.

Figure 6 shows the stress-strain curves predicted by the finite element analysis and the
three continuum models for uniaxial tension with Jfi = 6.5 percent and N = 0.1. The finite
element computation rapidly diverges from the initial yield prediction of the Richmond
model and conforms to the Tvergaard prediction up to about 0.1 true strain. From a strain
of 0.2 to about 0.4, the numerical results stiffen toward the Gurson prediction. However, for
true. strains above 0.4, the finite element model maintains a higher load carrying capacity
than for all three continuum models. The behavior of the finite element computation for
J; = 0.82 percent is similar to the high porosity case. The results agree with the Tvergaard
prediction at low strain, and diverge to the Gurson result with increasing strain. At high
strains, a stiff response compared with the continuum models is observed. For uniaxial
tension, the voids of the finite element analysis grow at a slower rate than the voids of the
continuum models. At high strains, the void volume fraction predicted by the continuum
- models increases at an accelerating rate while the rate of increase of the void volume fraction
predicted by the finite element method seems to be tending towards a low asymptotic value.
Since they are idealized to remain spherical, the voids of the continuum theories are modelled
as growing in the transverse directions and thus interact strongly with neighboring voids.
However, the voids of the finite element solution grow as ellipsoids and give rise to ligaments
which only change their cross-sectional area slowly. These ligaments hawe larger cross-
sectional area and are capable of carrying more load than the ligaments surrounding
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spherical voids of the same current volume fraction. This determines the difference between
the flow stress predictions of the continuum models and the finite element predictions as
summarized in Fig. 6. The dominance of void shape change in the finite element results at
high strains results in lower void growth rates which in turn results in higher load carrying
capacity. This explains why the finite element model does not lose load carrying capacity at
high strains like the continuum models. This result indicates that in addition to the void
volume fraction, internal variables are required in the continuum models to account for the
effect of void shape changes.

As in the uniaxial stress case, the finite element prediction for the stress-strain curve in the
pure shear case diverges rapidly from the initial agreement with the Richmond model. At
strains larger than 0.01. the agreement between the Tvergaard model and the finite element
resutlts is good in the case of f; = 6.5 percent. Even though the finite element prediction of
initial yield agrees best with the Richmond model for f; = 0.82 percent, continued straining
increases the macroscopic flow stress of the cubic cell until at 0.05 strain the effective value
is only slightly lower than the prediction of the Tvergaard model. However. thereafter the
trend is for the finite clement results to move gradually away from the Tvergaard prediction
and back down towards the Richmond model. Overall, though the Tvergaard model is in
best agreement with the finite element calculations.

Unlike the low triaxial stress states, the character of the finite element calculation for the
high triaxial stress state depends more on the initial void volume fraction. Figures 7 and &
show the true stress-strain behavior of the finite element and continuum models with initial
porosities of 6.5 and 0.82 percent respectively, both with a strain hardening exponent of 0.1.
In each case the finite ¢lement calculation reaches a maximum in load in the early stages of
straining.-For an initial void volume fraction of 6.5 percent, this maximum is followed by
a rapid drop in the load carrying capacity compared with the continuum models. However,
this sharp drop is not observed in the lower initial porosity material. As noted earlier, in the
finite element calculations the voids for the 0.82 percent initial porosity remain spherical
while the voids for the 6.5 percent initial porosity bulge out towards their-neighbors. It is
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