- COMPACT NUMERICAL

METHODS

FOR COMPUTERS:
linear algebra and

function minimisation

J. C. NASH



COMPACT NUMERICAL
- METHODS
FOR COMPUTERS:
linear algebra and
function minimisation

J. C. NASH

Adam Hilger Ltd
Bristol




Copyright © 1979 J. C. Nash

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without prior permission of the publisher.

. British Library Cataloguing in Publication Data

Nash, J C
Compact numerical methods for computers
1. Numerical analysis—Data processing
1. Title
519.4 QAD7

ISBN 0-85274-330-0

. Published by Adam Hilger Ltg Techno House, Redcliffe Way, Bristol BS1 6NX.
Adam Hilger is now owned by The Institute of Physics.

Filmset by The Universities Press (Belfast) Ltd, and printed 'in Great Britain by The
Pitman Press, Lower Bristol Road, Bath BA2 3BL.



PREFACE

This book is designed to help people solve numerical problemis. In particular, it is
directed to those who wish to solve numerical problems on ‘small’ computers, that
is, machines which have limited storage in their main memory for program and
data. This may be a programmable calculator—even a pocket model—or it may
be a subsystem of a monster computer. The algorithms that are presented in the
following pages have been used on machines such as a Hewlett-Packard 9825
programmable calculator and an IBM 370/168 with Floating Point Systems Array
Processor. That is to say, they are designed to be used anywhere that a problem
exists for them to attempt to solve. In some instances, the algorithms will not be
as efficient as others available for the job because they have been chosen and
developed to be ‘small’. However, I believe users will find them surprisingly
economical to employ because their size and/or simplicity reduces errors and
human costs compared to equivalent ‘larger’ programs.

Can this book be used as a text to teach numerical methods? I believe it can.
The subject areas covered are, principally, numerical linear algebra, function
minimisation and root-finding. Interpolation, quadrature and differential equa-
tions are largely. ignored as they have pot formed a significant part of my own
work experience. The instructor in numerical methods will find perhaps too few
. examples and no exercises. Howeveg, I feel the examples which are presented
provide fertile ground for the deve‘iopment of many exercises. As much as
possible, I have tried to present examples from the real world. Thus the origins of
the mathematical problems are visible in order that readers may appreciate that
these are not merely interesting diversions for those with time and computers
available.

Errors in a book of this sort, especially in the algonthms, can depreciate its
value severely. I would very much apprecxate hearmg from anyone who discovers
faults and.will do my best to respond to such queries by maintaining an errata
sheet. In addition to the inevitable typographical errors, my own included, I
anticipate that some practitioners will take exception to some of the choices I
have made with respect to algorithms, convergence criteria and orgamsanon of
calculations. Out of such differences, I have usually managed to learn something
of value in improving my subsequent work, either by accepting new ideas or by
being reassured that what I was doing had been through some criticism and had
survived. '

" There are a number of people who deserve thanks for their contribution to this
book and who may not be mentioned explicitly in the text:

(i) in the United Kingdom, the many members of the Numerical Algorithms
Group, of the Numerical Optimization Centre and of various university depart-
ments with whom I discussed the ideas from which the algorithms have con-
densed;



vi Preface

(i) in the United States, the members of the Applied Mathematics Division of the
Argonne National Laboratory who have taken such an interest in the algorithms,
and Stephen Nash who has pointed out a number of errors and faults; and

(ii) in Canada. the members of the Economics Branch of Agriculture Canada for
presenting me_with such interesting problems to solve, Kevin Price for careful and
detailed criticism, Bob Henderson for trying out most of the algorithms, Richard
Wang for pointing out several errors in chapter 8, John Johns for trying (and
finding errors in) cigenvalue algorithms, and not least Mary Nash for a host of
corrections and improvements to the book as a whole.

It is a pleasure to acknowledge the very important roles of Neville Goodman
and Geoff Amor of Adam Hilger Ltd in the realisation of this book.

J. C. Nash
Ontawa, 22 December 1977



CONTENTS

1. A STARTING POINT

1.1. Purpose and scope
- 1.2. Machine characteristics
1.3. Sources of programs
1.4. Programming languages used and structured programmmg_..
1.5. Choice of algorithms
1.6. A method for expressing algorithms
1.7. General notation

. FORMAL PROBLEMS IN LINEAR ALGEBRA
2.1. Introduction

2.2. Simultaneous linear equations

2.3. The linear least-squares- problem

2.4. The inverse and generalised inverse of a matnx
2.5. Decompositions of a matrix

2.6. The matrix eigenvalue problem

. THE SINGULAR-VALUE DECOMPOSITION AND ITS USE
TO SOLVE LEAST-SQUA.RES PROBLEMS
3.1. Introduction
'3.2. A singular-value decomposition algorithm
3.3. Orthogonalisation by plane rotations
3.4. A fine point
- 3.5. An alternative implementation of the singular-value decomposi-
tion
3.6. Using the singular-value decomposition to solve least-squares
! problems

. HANDLING LARGER PROBLEMS

4.1. Introduction

4.2. The Givens’ reduction

4.3. Extension to a singular-value decomposition
4.4. Some labour-saving devices

4.5. Updating a singular-value decomposition

. SOME COMMENTS ON THE FORMATION OF THE CROSS-
PRODUCTS MATRIX ATA

. LINEAR EQUATIONS—A DIRECT APPROACH
6.1. Introduction
6.2. Gauss elimination

25
25
26
27

29

31

32

40
40
40
44
45
52

53

59
59
59



viii

10.

11

12.

13.

14.

Contents

6.3. Variations -on the theme of Gauss elimination
6.4. Complex systems of equations
6.5. Methods for special matrices

. THE CHOLESKI DECOMPOSITION

7.1. The Choleski decomposition

7.2. Extension of the Choleski deoomposxtlon to non-negative defi-
nite matrices

7.3. Some organisational details -

.- THE SYMMETRIC POSITIVE DEFINITE MATRIX AGAIN

8.1. The Gauss-Jordan reduction

8.2. The Gauss-Jordan algorithm for the inverse of a symmetric -

positive definite matrix

. THE ALGEBRAIC EIGENVALUE PROBLEM

9.1. Introduction

9.2. The power method and inverse iteration

9.3. Some notes on the behaviour of inverse iteration

9.4. Eigensolutions of non-symmetric and complex matrices

REAL SYMMETRIC MATRICES

10.1. -The eigensolutions of a real symmetric matrix

10.2. Extension to matrices which are not positive definite

10.3. The Jacobi algorithm for the eigensolutions of a real symmetric
matrix

10.4. Organisation of the Jacobi algorithm

10.5. A brief comparison of methods for the eigenproblem of a real
symmetric matrix

THE GENERALISED FSYMMETRIC MATRIX EIGENVALUE
PROBLEM

OPTIMISATION AND NONLINEAR EQUATIONS

12.1. Formal problems in unconstrained optimisation and nonlinear
equations

12.2. Difficulties encountered in the solution of optimisation and
nonlinear-equation problems

ONE-DIMENSIONAL PROBLEMS

13.1. Introduction

13.2. The linear search problem

13.3. Real roots of functions of one variable

THE SIMPLEX SEARCH
14.1. The Nelder-Mead simplex search for the minimum of a
function of several parameters

-

68
69

70

70

72
76

79
79

82

- 86
86
86
92
94

97
97
99

104
106

110

112
118
118
122
124
124

124
134

© 141

141



15.

16.

17.

18.

19.

Contents

14.2. Possible modifications of the Nelder-Mead algorithm
14.3. An axial search procedure
14.4. Other direct search methods

DESCENT TO A MINIMUM I: VARIABLE METRIC
ALGORITHMS '
15.1. Descent methods for minimisation

15.2. Variable metric algorithms

15.3. A choice of strategies

DESCENT TO A MINIMUM II: CONJUGATE GRADIENTS

16.1. Conjugate gradients methods
16.2. A particular conjugate gradients algorithm

MINIMISING A NONLINEAR SUM OF SQUARES
17.1. Introduction

17.2. Two methods

17.3. Hartley’s modification

17.4. Marquardt’s method

17.5. Critique and evaluation

17.6. Related methods

LEFT-OVERS

18.1. Introduction

18.2. Numerical approximation of derivatives
18.3. Constrained optimisation -

18.4. A comparison of function minimisation and nonlinear least-

squares methods

‘THE CONJUGATE GRADIENTS METHOD APPLIED TO

PROBLEMS IN LINEAR ALGEBRA,
19.1. Introduction

19.2. Solution of linear equations and least-squares problems by

conjugate gradients
19.3. Inverse iteration by algorithm 24
19.4. Eigensolutions by minimising the Rayleigh quotient

APPENDICES

1. Nine test matrices
2. List of algorithms
3. List of examples

REFERENCES

INDEX

145
148

152

153
153
154
157

162
162
163

170
170
171
173
174
175
177

179
179
179
182

187
195
195
196

201
203

210
210
212
213

215

219



Chapter 1

A STARTING POINT

1.1. PURPOSE AND SCOPE

This monograph is written for the person who has to solve problems with (small)
computers. It is a handbook to help him or her obtain reliable answers to specific
questions, posed in a mathematical way, using limited computational resources.
To this end the solution methods proposed are presented not only as formulae but
also as algorithms, those recipes for solving problems which are more than merely
a list of the mathematical ingredients.

There has been an attempt throughout to give examples of each type of
calculation and in particular to give examples of cases which are prone to upset
the execution ‘of algorithms. No doubt there are many gaps in the treatment
where the experience which is condensed into these pages has not been adequate
to guard against all the pitfalls that confront the problem solver. The process of
learning is continuous, as much for the teacher as the. taught Therefore, the user
of this work is advised to think for himsélf and to use his own knowledge and
familiarity of particular problems as much as possible. There is, after all, less
than a human generation of experience with automatic computation and it should
not seem surprising that satisfactory methods do not exist as yet for many
problems. Throughout the sections which follow, this underlying novelty of the art
of solving numerical problems by automatic algorithms finds expression in a
conservative design policy. Reliability is given priority over speed and, from the
title of the work, space requirements for both the programs and the data are
. kept low.

Despite this policy, it must be mentioned immediately and with some
emphasis that the algorithms may prove to be surprisingly efficient from a
cost-of-running point of view. In two separate cases where explicit comparisons
were made, programs using the algorithms presented in this book cost less to run
than their large-machine counterparts. More recent tests of execution times for
algebraic eigenvalue problems, roots of a function of one variable and function
minimisation showed that the eigenvalue algorithms were by and large ‘slower’
than those recommended for use on large machines, while the other test problems
were solved with notable efficiency by the compact algorithms. That ‘small’
programs may be more frugal than larger, supposedly more efficient, ones based -
on different algorithms to do the same job has at least some foundation in the way
today’s computers work.

Firstly, most machines are controlled by operating systems which charge for ’
main memory storage and for transfers between this and backing store (disc, tape,
etc). In both compilation (translation of the program into machine ¢ode) and

1



2 Compact numerical methods for compuers

execution, a smaller program will probably attract fewer of these charges. On top
of this, the time required to compile the program should be reduced.

Secondly, once the program begins to execute, there are housekeeping opera-
tions which must be paid for: :

(i) to keep programs separate in a time-sharing environment, and
(ii) to access the various parts of the program and data within the space allocated
to a single user.

Some recent studies by Dr Maurice Cox of the National Physical Laboratory,
England, show that (ii) above requires about 90% of the time that the computer
spends with a typical scientific computation. Only about 10% of the time goes to
actual arithmetic. It is not unreasonable that a small program has simpler
structures such as address maps and decision tables than a larger routine, and it is
tempting to suggest that the computer may be able to perform useful work with
the small program while deciding what to do with the larger one. This explanation
is largely speculation at the moment of writing, since hard evidence is not yet
available. Moreover, this book appears to be the first attempt to select and
present algorithms which have low storage requirements. This is in part due to the
very recent appearance of small computers and programmable calculators. Of
course, the very early electronic computers were small in the sense of memory
space. However, they were also very unlike modern small computers in the
manner in which they were programmed and operated. The demands on the
programmer himself to handle such fundamental operations as floating-point
arithmetic and simple mathematical functions have largely disappeared, though
there is unfortunately still a need to watch for errors in the manufacturers’
floating-point arithmetic and special functions.

Besides the motivation of cost savmgs or the desire to use an available and
possibly under-utilised small computer, this work is directed to those who share
my philosophy that human beings are better able to comprehend and deal with
small programs and systems than large ones. That is to say, .it is anticipated that
the costs involved in implementing, modifying and correcting a small program will
be lower for small algorithms than for large ones, though this comparison will
depend greatly on the structure of the algorithms. By way of illustration, I
implemented and tested the eigenvalue/vector algorithm (algorithm 13) in under
half an hour from a 10 character/second terminal in Aberystwyth using a Xerox
Sigma-9 computer in Birmingham. The elapsed time includes my instruction in the
use of the system which was of a type I had not previously encountered. I am
grateful to Mrs Lucy Tedd for showing me this system. Dr John Johns of the
Herzberg Institute of Astrophysics was able to obtain useful eigensolutions from
the same algorithm within two hours of delivery of a Hewlett-Packard 9825
programmable calculdtor. He later discovered a small error in the prototype of
the algorithm.

The topics covered in this work are numerical linear algebra and function
minimisation. Why not differential equations? Quite simply because I have had
very little experience with the numerical solution of differential equations except
by techniques using linear algebra or function minimisation. Within the two broad



A starting point 3

~

areas, several subjects are given prominence. Linear equations are treated in
considerable detail with separate methods given for a number of special situa-
tions. The algorithms given here are in fact very much the same as those used on
large machines. The algebraic eigenvalue problem of symmetric matrices is
discussed quite extensively, while that of non-symmetric and complex matrices is
-only touched upon briefly. This is largely a reflection of the comparative occur-
rence of these problems in real-world situations, though it must be pointed out that
algorithms for the general square-matrix eigenproblem are complicated considerably
by the inherent difficulties which attend the problem. Furthermore, one must deal
with complex numbers on machines where the type ComMPLEX, if it exists, may be
handled unreliably. Constrained optimisation is likewise given only brief attention
because the development of methods to handle this problem is proving a difficuit
and tortuous task. When the number of constraints is large, it is commonly called
the mathematical programming problem. In practice it usually has a very simple,
if large, structure but is nonetheless generally attacked by a method which ignores
such simplifying structure because all too often the simplification possible in one
problem does not occur in another.

Since the aim has been to give a problem-solving person some tools with which
to work, the mathematical detail in the pages that follow has been mostly confined
to that required for explanatory purposes. No claim is made to rigour in any
‘proof’, though a sincere effort has been made to ensure that the statement of
theortms is correct and precise.

1.2. MACHINE CHARACTERISTICS

For the purpose of the discussion a small computer will mean any computing
device, or share of such, which allows the user about 6000 characters of memory
space to hold his program and data. The program will not include input-output
routines, basic mathematical functions or system utilities, nor any compiler or
interpreter. This definition, then, is of the logical structure which is available to
the user. It corresponds reasonably well to the minimum configuration of a
number of desk-top computers or programmable calculators as well as to the
pieces of larger machines which are made available to users by time-sharing or
student-teaching systems. The term ‘small computer’ will henceforth apply to this
logical structure which faces the user. This machine will be programmable in some
language or other, usually high-level, to facilitate its use. Increasingly the lan-
guages available on such systems are nominally the same as those on large
machines. However, if standardisation has proved an elusive goal in the domain of
large computers, it has yet to be sighted in the realm of small ones. Indeed, this
has dictated the form of the algorithms presented later. Unfortunately, most of us
who must solve problems with computers seem to.have almost no say over the
characteristics of the machines and systems with which we must work. Too often,
we ride plggy-back on some or other data-processing (as opposed to computing)
operation. It is no use listening to the programmmg language specialist- who
chides, ‘No one in his right mind programs in XXX’, where XXX happens to be
the only language on the system available to us. Since there is a job to be done,



4 Compact numerical methods for computers

we must do the best with the tools we have unless we have the wherewithal to
change them. ]

This should not lead to complacency in dealing with the machine but rather to
an active wariness of any and every feature of the system. A number of these can
and should be checked by “ising programming devices which force the system to
reveal itself in spite of the declarations in the manual(s). Others will have to be
determined by exploring every error possibility when a program fails to produce
expected results. In most cases programmer error is to blame, but I have
encountered at least one sy:tem error in each of the systems I have used seriously.
For instance, trigonometric functions are usually computed by power series
approximation. However: these approximations have validity over specified do-
mains, usually [0, 7/4) or [0, n/2] (see Abramowitz and Stegun 1965, p 76).
Thus the argument of the function must first be transformed to bring it into the
appropriate range. For example

sin(m—@)=sind ' (1.1
or
- sin(7/2 — ) = cos . (1.2)

Unless this range reduction is done very carefully the results may be .quite
unexpected. On one system, hosted by a Data General NOVA. I have observed
that the sine of an angle near = and the cosine of an angle near n/2 were both
computed as unity instead of a small value, due to this type of error. Similarly, on
some models of Hewlett-Packard pocket calculators. the rectangular-to-polar
coordinate transformation may give a vector 180° from the correct direction. (This
appears to have been corrected now.)

Since most algorithms are in some sense iterative, it is necessary that one has
some criterion for deciding when sufficient progress has been made that the
execution of a program can be halted. While. in-general. 1 avoid tests which
require knowledge of the machine, preferring te use the criterion that no progress
has been made in an iteration. it is sometimes convenient or even necessary to
employ tests involving tolerances related to the structure of the computing device
at hand. .

The most useful property of a system which can be determined svstematically is
the machine precision. This is the smallest number. eps. such that

I+eps>1 (1.3)

within the arithmetic of the system. Two programs in FORTRAN for determining the
machine precision. the radix or base of the arithmetic. and muchine rounding or
truncating properties have been given by Malcolm (1972). The reader is cautioned
that. since these programs make use of tests of conditions like (1.31. thev mav be
frustrated by optimising compilers which are able to note that (1.3} in exact
arithmetic is equivalent to

eps > 0. (1.4)

Condition (1.-}) is not meaningful in the present context. The Univac compilers



A starring poini : s

have acquired some notoriety in this regard. but they are by no means the only
offenders. )

To find the machine precision and radix by using arithmetic of the computer
itself. it is first necessarv to find a number g such that «1-qg! and q are
represented identically. that is, the representation of 1 having the same exponent
as q has a digit in the (1 — 1)th radix position where 1 is the number of radix digits
in the floating-point mantissa. As an example, consider a four decimal digit
machine. If g =10000 or greater. then g is represented as (say)

0-1=%1ES

while 1 is represented as
0-00001 * 1ES.

The action of storing the five-digit sum
0-10001 = 1ES

in a four-digit word causes the last digit to be dropped. In the example.
q =10000 is the smallest number which causes (1-g) and g to be represented
identically. but any number

q>9999

will have the same property. If the machine under consideration has radix R. then
-any

q= R; (1.9
will have the desired property. If. moreover. g and R'™} are represented so that
g<R'"! (1.6)
then
q-R>q. (L.

In our example. R= 10 and 7=4 50 the largest q consistent with (1.6) is
g=10"-10=99990=0:9999 = 1EX
and
99990~ 10= 100 000 =0-1000 % 1E6> q.

Starting with a trial value. sayv g = 1. successive doubling will give some number
q=2"

such that (g + 1) and g are represented identically. By then setting » 10 successive

integers 2. 3. 4.. ... a value such that

q*r>q/ (1.8

will be found. On a machine which truncates. r is then the radix R. However. if
the machine rounds in some fashion. the condition (1.8) may be satisfied for r<R.
Nevertheless, the representations of q and (q + r) will differ by R. In the example.



6 Compact numerical methods for computers
: doubling will produce q = 16 384 which will be represented as
‘ 0-1638 * 1ES
so q+r is represented as
‘ 0-1639 * 1ES
for some r=<10. Then subtraction of these gives
0-0001 = 1E5 =10.

Unfonunatel)';; it is possible to foresee situations where this will not work.
Suppose that'q =99 990, then we have

0-9999 * 1ES5+10 = 0-1000 * 1E6

and .
0-1000 * 1IE6-0-9999* 1ES=R’.

But if the second number in this subtraction is first transformed to
020999 * 1E6

then R’ is assigned the value 100. Successive doubling should not, unless the
machine arithmetic is extremely unusual, give q this close to the upper bound of
(1.6).

Suppose that R has been found and that it is greater than two. Then if the
representation of g +(R —1) is greater than that of g, the machine we are using’
rounds, otherwise it chops or truncates the results of arithmetic operations.

The number of radix digits ¢ is now easily found as the smaliest integer such

that
R'+1
is represented identically to R*. Thus the machine precision is given as
eps=R'™“ =R “", (1.9)
In the example, R =10, t =4, so
R72=0-001.

Thus
1+0-:001=1-001>1

but 1+0-0009 is, on a machine which truncates, represented as 1.

In all of the previous discussion concerning the computation of the machine
precision it is important that the representation of numbers be that in the
memory, not in the working.registers where extra digits may be carried. On a
Hewlett-Packard 9830, for instance, it is necessary when determining the so-
called ‘split precision’ to store numbers specifically in array elements to force the
appropriate truncation.

While the subject of machine arithmetic is still warm, note that the mean of two
numbers may be calculated to be smaller or greater than either! An example in
four-figure decimal arithmetic will serve as an illustration of this.



A starting poini | 7

Exact Rounded Truncated
a 5008 5008 5008
b 5007 , 5007 5007
a+b 10015 1002 % 10 1001 * 10
(a+b)2- 5007-5 801010 : *500-5+ 10
=5010 = 5005

That this can and does occur should be kept in mind whenever averages are
computed. For instance, the calculations are quite stable if performed as

(a+b)/2 = 5000 +[(a - S000) + (b~ 5000)2.

Taking account of every eventuality of this sort is nevertheless extremely tedious.

Another annoying characteristic of small machines is the frequent absence of
extended precision, also referred to as double precision, in which extra radix digits
are made available for calculations. This permits the user to carry out arithmetic
operations such as accumulation, especially of inner products of vectors, and
averaging with less likelihood of catastrophic errors. On equipment which func-
tions with number representations similar to the IBM/360 systems, that is. six
hexadecimal (R = 16) digits in the mantissa of each number, many programmers
use the so-called ‘double precision’ routinely. Actually 1 = 14, which is not double
six. In most of the calculations that I have been asked to perform. I have not
found such a sledgehammer policy necessary. though the use of this feature in
appropriate situations is extremely valuable. The fact that it does not exist on
most small computers has therefore coloured much of the development which
follows.

Finally, since the manufacturers’ basic software has been put in question above,
the user may also wonder about their various application programs and packages.
While there are undoubtedly some 'good’ programs, I must report that my own
experience is that nothing is often preferable to something in this field, since badly
written and poorly documented programs take longer to learn and understand and
cause more trouble when they go wrong than a homegrown program implemented
from scratch. Hopefully, this situation will soon change, but until programs are
available which are proud enough to give their pedigree, that is,
~ author/implementor and any modifications, togéther with performance evalua-
tions (not just ‘I ran it’), my advice to the user is ‘beware’.

1.3.. SOURCES OF PROGRAMS

There are at least three groups, at the time of writing; which are trying to provide
high-quality mathematical software on a continuing basis. The Numerical Al-
gorithms Group, based in Oxford, England, supplies a large subroutine library in
FORTRAN, ALGOL and ALGOL 68 to a university and institutional (and more recently
private) user community. I worked with NAG for two periods of several weeks in
1975-76, and some of the material in this book was to have been born of
condensations of NAG routines. As it has turned out, the ideas of the many



8 Compact numerical methods for computers

workers who have contributed to the NAG library were more important than the
routines individually, so that the algorithms I have included are more a distillate
than a condensation. ~ ,

The Applied Mathematics Division of the Argonne National Laboratory, near
Chicago, is the centre of the US National Activity for Testing Software. Argonne
is the home of EIsPack, a package designed to handle nearly every imaginable
algebraic eigenproblem; FUNPACK, a set of special function routines; and MINPACK,
a study of minimisation programs. LINPACK, a suite of programs to solve various
linear-equation and least-squares problems, should be released for distribution
shortly. These are all in FORTRAN. The Asgonne staff are the most thorough I
know when it comes to testing. Up to the time of writing, their interest has been
in medium to large machines and their philosophy has been very different from
that which I present here. Where I use a heuristic device to obtain a result, my

"opinion is that Argonne workers will determine the exact causes and effects of
each sftuation and program accordingly; certainly a more correct but usually a less
compact approach.

International Mathematical and Statistical Libraries (IMSL) of Houston, Texas,
is a private corporation which provides a FORTRAN subroutine library to users of
medium- to Jarge-scale machines. The IMSL collection is quite strong in statistical
routines, and my colleagues who have used it praised the quality of thg algorithms
but disliked the somewhat cumbersome subroutine calls necessary to use them (a
similar criticism has been made of NAG routines).

Finally on sources of spftware, readers should be aware of the Association for
Computing Machtnery (ACM) Transactions on Mathematkal Software which
publishes research papers and reports algorithms.

-1.4. PROGRAMMING LANGUAGES USED AND STRUCTURED
PROGRAMMING

The machines on which the algorithms given in the following pages are designed
to run are programmed in a diverse collection of programming languages. It was
my original intention to give the algorithms in Basic which is the language I
mainly, but by no means exclusively, use for program development. However, in
addition to the absence of standardisation in BAsic, there are many machines with
FORTRAN OF APL, ALGOL, ALGOL 68 or even some exotic language of their very own,
such as the Hewlett-Packard 9810 and 9820 series. There is no explicit barrier to
languages such as pL/1 or cosoL either, though I have yet to find small computers
(under the definition of §1.2) which can be programmed in these languages.
However, new ones are being devised all the time and. one of BCPL, C Or PASCAL is
very likely to become common in the future. .

In recent years, the concepts‘of structured and modular programming have
become very popular. The interested reader is referred to Kernighan and Plauger
(1974) or. Yourdon (1975) for an exposition of these topics. I have found both
structured and modular programming to be useful in my own work and recom-
mend them to any practitioner who wishes to keep his debugging and re-program-
ming efforts to a minimum. Nevertheless, while modularity is relatively easy to -



A starting point 9

impose at the level of individual tasks such as the decomposition of a matrix or
the finding of the minimum of a function along a line, it is not always rcasonable
to insist that the program avoid Goto instructions. After all, in aiming to kcep
memory requirements as low as possible, any program code which can do double
duty is desirable. If possible, this should be collected into a subprogram. In a
number of cases this will not be feasible, since the code may have to be entered at
. several points. Here the programmer has to make a judgement between compact-
ness and readability-of his program. I have opted for the former goal when such a
decision has been necessary and have depended on comments and the essential
shortness of the code to prevent it from becoming incomprehensible,

One of the unfortunate aspects of the most popular of the programming
languages is their lack of constructions which permit the structuring of programs.
In particular, the form

IF...X...THEN.. . A.. EISE...B
is usually absent. This can be replaced by

IF...X... THEN GOTO A
B

GOTO Rest of program

A

Rest of program.

In Basic, particularly, the IF. .. GOTO. .. statement is mandatory.

1.5. CHOICE OF ALGORITHMS

The algorithms which appear in this work have been chosen for their utility and
for their particular suitability for implementation on small computers. Many
topics I would have liked to discuss are deliberately left out because there has
been insuflicient development to make them suitable for tackling on a small
machine. For instance, over the last four years 1 have spent a considerable amount
of human and computer time trying to ‘devise a method for the solution of
mathematical programming problems which does not involve the construction of 2t
simplex tableau. Other workers are no doubt pursuing the same objective,
spurred on by the enticing simplicity of many mathematical programming prob-
lems in the form in which they are stated and the desire 1o avoid the increased
memory requirement imposed by slack, surplus and artiticial variables. Alas, while
some techniques based on the conjugate gradients minimisation with simple
penalty functions for the constraints seem to be able to compute good approxima-
tions 1o the solutions, the rate of convergence is measurable in vears rather than
seconds. AL the time of writing, the simplex algorithm of Dantzig appears the
MOst space conservative 1o implement (Gass 1904, Hadley 19602 1T a good
backing store is available on a small computer, the Revised Simplex_algorithm
may be better, but few small computer svstems have fast serateh file capability.
Neither of these algorithms should be confused with llu Nelder Mcead simplex
algorithm for gencral function minimisation.



