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Preface

This volume gathers a number of papers devoted to microlocal analysis, that is
to say, to the precise application of Fourier transforms to analysis on manifolds.
Mostly these articles are the written versions of lectures given by their authors at
the AMS Symposium held at the University of Notre Dame from April 2 to April
5. 1984. In some instances the version is an abbreviated one; in one or two cases
the content of the written paper differs from that of the lecture delivered, but
covers a related topic.

Microlocalization is the most powerful tool of lincar analysis to have emerged
since distribution theory; it is the natural continuation of the latter. Its core is the
theory of pscudodifferential and Fouricr integral operators, Its gentral tenet is
that the natural context for the study of PDE is the cotangent bundle-—a claim
that would not have excessively surprised the mathematicians of the nincteenth
century or the physicists of the twenticth. In fact, physics has anticipated much of
the new developments in the direction of microlocal analysis, often with less rigor
and greater daring.

The successes of lmcroloc.ﬂu.mon have been truly splendid. They have made
the analytic foundation of the Atyah-Singer formula simple, helped us pencetrate
deeper into the difficult study of uniqueness of solutions, and helped us under-
stand why and when boundary problems like the oblique derivative or the
3-Neumann problem could be solved. It has allowed us to assert the existence or
nonexistence of solutions to large classes of lincar PDE and apply the vivid
language of geometrical optics to describe tieis singularitics. That same blend of
geometrical optics and hard analysis has led to a greatly improved mathematical
(hcdry of diffraction. And hyperfunction theory has revitalized the study of
overdetermined systems in the analytic category. Recently, the range of microlo-
cal analysis has widened even more: Its advancing cdge now tackles inverse
scattering, the analysis of tunneling, the study of Cauchy- Riemann structures. It
is even beginning o percolate into that most forbidding realm—nonlinear PDL.
Although the truly severe nonlinearities, particularity those connccted with shocks,
scem at present out of reach, there is reason to believe that the future (and the
near future, at that) will witness good progress in this direction.

Each of the topics 1 have just alluded to were discussed by the fecturers at the
Symposium in Notre Dame; most of them, and many more, are studied in the
articles in this volume. They bear testimony to the vitality and scope of the

Tourier transform nicthod. . S
Fourier transform micti Francots TREVES
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Proceedings of Symposia in Pure Mathematics
Volume 43 (1985)

Propagation of Local Analyticity
for the Euler Equation

S. ALINHAC AND G. METIVIER

The following is the text of a talk given by the first author at the AMS meeting
in Notre-Dame, Indiana on the joint paper Propagation de !’ analvticité locale pour
les solutions de I’ équation d’ Euler (to appear in Arch. Rational Mech. Anal.)

1. Introduction and results. Let x € R”, 1 € [0, T'], and consider the motion of

an incompressible nonviscous fluid given by the cquations
Qu/ot +(u-vViu=vwp+f, divu=0, u(x.0)=u,(x),

where u(x, 1) = (u/(x. 1)....,u,(x, 1)) is the velocity, p is the (unknown) pres-
sure, and f and u are given. t

Assume that a sufficiently regular solution (u, p) is given globally in\lhe strip
R" X [0, T). More precisely, assume that, for some p > n/2 (say p € N),
we CU0, T (H*" R, p € CO0. T), H* (R"). and u, €
C%[0, TY.(H*(R"))™). Then the geometry of the fluid lines x'(1) = u(x(1). 1) 1s
well defined. If ¢, (x) is the solution of these equations, with ¢, (x) = x, then
¢, .. R" = R" is a diffeomorphism.

Let © € R" be an open set, and let € be the tube with basis Q:

€= {(x,1).0<t<T,x€¢,(9Q)}.
We prove the following
THEOREM. If u is analytic in Q and [ in €, then u is analytic in €.

RemMARK. The same theorem holds for v on U X [0, T], with u-» =0 on
U X [0, T

2. Some related results. (a) The existence of smooth cnough solutions for the

Euler equation has been established by many authors: se¢ Kato [12], Ebin-
Marsden {11}, Temam [15], etc.

1980 Mathematics Subject Classification. Primary 35175,
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2 S. ALINIIAC AND G. METIVIER

(b) For the case of globally analytic data (on a compact mamfold or on a
bounded sct), existence has been proved by Baouendi-Goulaouic [4]-[6] and
Delort [10].

(¢) Recently, G. Metivier [14] has obtained local existence for analytic pscudo-
differential operators and analytic data.

(d) A priori regularity results such as ours have been proved for the Euler
equation by Bardos (7], Bardos-Benachour-Zerner 8], and Benachour [9] in the
case of globally analytic data.

(¢} For general (nonlinear) hyperbolic equations or systems, propagation of
analyticity has been proved by Alinhac-Metivier [1, 2.

(f) Generalizations to nonhomogencous fluids and boundary-value problems
have been obtained by Le Bail [13]. ‘

What is the new feature of the present problem? The problem has a pscudodif-
ferential character. More precisely, let 7 = 1 ~ grad A div be the projector on
divergence-free fields, orthogonally to gradients; then u satisfies

du/dt + alu- vu)=mf.  u(x,0)=uy(x),

which can be thought of as a (nonlincar) hyperbolic pscudodifferential system
(whatever that means). The main difficulty here is that o being nonlocal, zones
where 1 is not smooth contribute to the value of #(u - V) in €. The quantitative
control of this contribution will be the crucial step in the proof (Lemma 3.5).

3. Some iceas of the proof. The proof is carricd out by taking x-derivatives of
the equation and estimating them recursively with the aid of an energy incquality
(control of r-derivatives being then given by the equation).

For fixed (Torever) g and any p, a, . letjal = p + 1, |B] < p, and v = 37 " Pu.
Then

Do/ +u-wo=0"Mu-vu) —u- v Fu+ 30 Pop + LY
=&t tg =8
3.1. Classical papers (Friedman, Morrey- Nirenberg, ete.) and experience in the
field show that*nested™ open sets in £ (which can be assumed smooth without
loss of gener:lity) have to be considered.
If 8(x) > 0 is locally the distance 10 02, let €5 = {(x € £, 8(x) > 8}, &, ;=
&, o(25), cte. We will estimate, at time ¢, the //*-norm in x of 37 Mein @, 5. Let

/\',,(’. 8) = sup "O‘:.‘u(t, ')"m‘uz,.ﬁ)

lal=p

and

e M l)l(ss)'l" ¢

",

Y, = sup  sup  sup {

»
tegep 1€f0 1] <88,

‘\,,,(’\ 8)} 5

where £ > 0 (¢ << 1) and A > | have to be chosen, and m, = cepl/(p + 1)?

(sce [1].
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The final aim of the recursion argument will be to prove Y, < /1, Vp, which
implies analyticity in €.

3.2. The energy inequality. Recall the following classical inequality. 1f o0 +
- Vo =g, then

lo (e, )|

4
et <100 Mgy + 2 Mg (s, Miza, o ds.

3.3. Estimates for g, and g,. Since f is analytic, the estimate of g, is straightfor-
ward.

The estimate of g, can be obtained by using the machinery of [1]. The key facts
are, of course, that 77* is an algebra, and the special choice of m ,, which allows us
to keep the same g, A in the recursion.

We summarize the results in the following lemma.

Lemma. There exist C, ey, > 0, and 8, > 0 such that for all 0 < € < gy, N > 0,
0<8<8,,t€l0,T)wehave(i=1o0r3)

llg, (. ')”lﬁm,,.»

(3.3) )

<C(p+ l){,\’,,”(t,ﬁ(l e )) +(}’,,2 + 1)0""'(;8)”'::1,,}.

Of course, all constants are independent of p.
3.4. Estimates for the derivatives of the pressure. We have
du N a“ &

Ap = K: ﬁ}j—dwa‘A’

S0
g = 0_:.'+”V[) = A—laxvay:u+[l‘l,/l = KO.L-+/!—IIA’

where &' means the usual convolution, and X = A7'3,7 is an analytic pscudodif-
ferential operator of order 0.

The remarkable fact here is that the type of control of the derivatives of «
expressed by the inequalities Y, < (p < N) is preserved by the action of K
(even the constants g, §, A are preserved).

This is precisely stated in Lemma 3.5, and it allows us to prove for g, the
inequality (3.3). ’

3.5 The crucial { pseudolocal ) lemma.

Lusmya 3.5, Letw € H*(®R)NC 2(R), and let K be an analytic pseudedifferen-
tial operator of order 0.

Set gl 5= SUP =10l e - Then there exist C, gy > 0, 8§, >0, s.t. for
p=1h0<e<e,0<38 <38, welave

Kwlp.s < C{|wlpsa -1 +(e8)"m Alwl - + ||w||,,,.(,,",)}.
’
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where

(e8) ql“'!q,s

Deqep m,

5e€10.4,]

When this lemma is applied to the situation of 3.4, ¢ is to be considered as a
parameter.

A very similar result has been obtained by Baouendi~Goulaouic [6]. who deal
with functions holomorphic in certain domains of the complex space.

This lemma is proved by cutting the kernel & of X in p zores concentric about
the origin.

3.6. End of the proof. Inequality (3.3) for g and the cnergy estimate 3.2 imply
casily (taking into account the analyticity of u,)

Yo < sup{ Y, Hy + G (Y2 +1)/(A - 7))}

for some constants C,, I, and all & 1/A small cnough. Appropriate choices of H,
e, A then give Y, < 1.

[“']p=
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A Functional Calculus for a Class
of Pscudodifferential Operators
with Singular Symbols

JOSE L. ANTONIANO AND GUNTHER A. UHLMANN!

0. Introduction and statement of results. Distributions whose wave front sct is
contained in several intersecting Lagrangian manifolds appear naturally in many
situations. For instance, the Schwartz kernel of the parametrices constructed by
Duistermaat and Hormander (sec [DH]) for pseudodifferential operators P of real
principal type have wave front set contained in the diagonal and in the flow-out,
from the diagonal intersected with p = 0, by the integral curves of H,,. Also in the
case of operators with double characteristics, several intersecting Lagrangian
manifolds appear duc to the interaction of the different flows (sce {GU, MU,
M., U).

In this paper we cxtend the symbol calculus developed in Guillemin-Uhlmann
[GU] for the case of two Lagrangian manifolds intersccting cleanly to a functional
calculus under certain restrictions. Of particular importance is the casc of a
functional calculus for pseudodifferential operators with singular symbols. We
now describe our results more precisely.

Let X be a C* manifold of dimension n, A = A, the diagonal in T*(X) X
T*(X), p a symbol of real principal type (i.e., p is a real-valued canonical C*
function homogeneous of degree 1 on T*X\0), dp # 0 on p =0, dp and the
one-form are linearly independent on p = 0. Let A, be the Lagrangian manifold
obtained as the flow-out from A N { p =0} by the integral curves of the
Hamiltonian vector ficld associated to p. In this case the compositions of the
different Lagrangians do not generate new manifolds since Age Ay = A,
AgeAy=A, AjeAg=A, Ao A, = A, Notice also that the intersection of
A, with itsclf is clean. Thus, the question naturaily arises of whether the

1980 Mathematics Subject Classification. Primary 35899: Sccondary 58G15.
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6 J. L. ANTONIANO AND G. A. UHILMANN

composition of two operators in 1°(X X X; Ay, A)), as defined in [GUY), is in the
same class. We prove

Tueorem 0.1. Let A € IM(X x XiAgy A, BEI™(X X X; Ay, A)) be
properly supported. Then Ao B € IP(X X X; Ay, A,), with p=p +r— n/4,
I=1l+s5s-1/2.

Theorem 0.1 is proved in §2. In §3 we compute the symbol of the composition
on Ay, A, away from the intersection = = Ay N Ay A e B is a pscudodilfcrential
operator on Ay — 2. We have

(0.1) 0 (Ao B)|a,-x = o(d)|a,-x 0(B)|a,-x.

Also Ao B is a Fourier inlcgrul operator on A, — =. Let (.\',..E, z,$)e A, - X,
Then, microlocally,

(0.2) o (Ao B)|a,-x(x,82,8)

= fo (A)I/\|(x9 § )’(‘), 1)(‘))0 (B)|A,(y(l)."l(f), 2,{) dt,

where (3(1), 9(¢)) denotes the (maximally extended) bicharacteristic curve joining
(x, &) and (z,¢). (0.2) does not take into account Maslov contributions and
half-densitics. Also, (0.2) is, at the moment, a formal expression because of the
singulitrities of o(A) and o(B) on =. However, as we shall sce in §3, the
singularitics of a(A)|,, and o(B)},, in (0.2) occur at different ¢’s, and onc can
make sense of (0.2) in the sense of distributions. In the casc

A€ 1PT (XX X A) € IPHX X X; A, Ay),
B elr—n/d'(Xx X; Al) c lr.s(,\'x XA, A|),

formula (0.2) was obtained by Duistermaat and Guillemin (sce [DG)). In §1 we
bricfly review the symbol calculus of [GU]. In §4 we give an application. We
prove

Tueorem 0.2, There cxist clliptic ¥, We 'R X R A, A) (in the sense
described in §1) such that
9 9 . =9 9
—— = F—— " micr ) near ¢ =
(0'“ ox, + A)Q’l %0.\‘1 o, microlocally ncar A N { &, = 0}.
Here A is a classical pseudodifferential operator of order 9 in R, 1 > 2, and p = §,
in this case.

We recall that operators of the form (3/0x,)(/0x,) + A are a microlocal
model for operators with double involutive characteristics of product type satisfy-
ing the Levi condition [U]L In §4 we also give further examplces of operators in
(X X X; A, A}), namely, pscudodifferential powers of operators with simple,
real characteristics.

Theorem 0.1 was obtained independently by Jiang and Mclrose (see [JM)).
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1. Symbol calculus (sce [GU] for details). Let X be a smooth manifold of
dimension n > 2, A, A, two conic Lagrangian submanifolds of T X\ 0 inter-
sccting cleanly in a-submanifold of codimension 1 oneach A, i = 0,1, and
(1.1) Ty(Ay) NTH(A) = TH(Ag N Ay) forallA € AgNA,.

A basic example of such an intersecting pair in T*(R") is given by
Ay = ((0,¢) e T*R"\ 0},
A = {(x,§) € T*R"\ 0|x' = 0, ¢, = 0}.
Here (x, ¢) are the standard coordinates in T*(R"), x = (x,, x') € R X R""!, and
=,.8HeERX R"! Let R" = R" X R. Let z, x, s be coordinates on R™, R", -
and R, respectively, and let £, o be the dual variables of x, s.

~ $P'(m, n,1) denotes the space of all C™ functions in (z, §, o) compactly
supported in z and satisfying

d\fa\fray
a0 (5 (&) (6)
uniformly in (z, §, 6).
Let a,(z, ¢, 6) be a smooth function on the set £ # 0, homogeneous of degree r

in §, and let a, (z, £, 0) be a smooth function on the set £ # 0, o # 0, bihomoge-
neous of degree (r, s) in (§, 6). We shall say

(1.2)

< Cop, (1 + )P0 + 10 ™™

- 00 -N
(1.4) a,~ Y a,, ifp(§, o)(a, - Xam) € §'-(N+h
s=/ s=1
where p is a smooth function that is zero near ¢ = 0 and o = 0 and one outside a
compact set. S5/ (m, n,1) denotes the subspace of S”/ (m, n,1) consisting of all

symbols that admit an asymptotic expansion of the form

(1.5) a~ —fa,,

r=p

with the a,’s as in (1.4). Here ~ means

r=p
where p is a smooth function that is zero near £ = 0 and one outside a compact
sct.

1™ (X, Ay, A,) denotes the space of oscillatory integrals with singular symbols
as defined in [GUL. A microlocal model is 77/(R" A, A)). We say pe
17/ R Ao, A))if p = p, + p,, with g, € CP(R"), and p, can be represented by
means of the oscillatory integral

(1.6) B, = f elln-abirxtirselg(s x ¢ 6)dsdtda,

witha € S5 (m,n 1), pP=p—n/4, I'=1-1/2.
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We have the following facts from [GU].

ProrostTioN 1.1. Let Ay and A, be as in (1.2), and let &= Ay A Then
WE(py) © AU A, Moreover, near Ay — =, p, is microlocally in the space
/ "”.* YR Ag), and its leading symbol is a, (2, £, 0)|.0.0-¢p OMining half-
densities and Maslov contributions. Near Ay — X, n, is microlocelly in the space
1P /3RY ), and its leading symbol is '

1.7 (fa,,(z,&,c)e""do)

A
XN'=0
£ =0

$=X)

omitting half-deusitics and Maslov contributions.

ProrosiTioNn 1.2, With | fixed, ﬂ,,l”-’--—- CER"). With p fixed, N, 1M =
I"R" A)).

DerINITION 1.1, Given u € 17(X; Ag, Ay), let oy(u) = o(u)| 5, - and o(1)
= o(u)|, - s- Op(u) is called the principal symbol of u.
The main result is

ProrosiTION 1.3. The following sequence
0= 177X, Aoy A)) + 127X Ag, Ay) = 171 X5 A, AY)
- SP(X; A, ) >0

is exact, where SN X; Ay, S) is the subspace of R'"V2(Qy© Ly Ay, Z) (as
defined in [GU)). R'~12 is, inwitively, “the space of smooth functions on Ay — =
that have a singulerity of order | a1 £, and consist of elements that are homoge-
neous of degreep + 1 + n/4.

Let X = R X R", let A, = A be the diagonal, and let A} be tire flow-out from
A N {£, = 0} by the integral curves of 3/9x,. It is casy to checek

ROPOSITION 1.4. If A € IP( X, A, A)) then A' € I7/(X; A, A)).
DEFINITION 1.2, A € IP1(X; A, A)) is ellipticif oy(A4) #+ O on A — X

2. Prooi of Theorem €.1. Using the invariance of the distributions in
17 X; Ag, A)) under conjugation by Fourier integral operators (see [GU)), we
can assume X = R" X F", A, is the diagonal in T*(R") X T*R"), and A, is the
flow-out from Ay N (£, = 0} by the integral curves of 3/0.x; i.¢.y

A= {{(x,8), (x, §)) € T*R" X R")\0},
A= {{(x, X0, ), (3, x,0, $)) e THR" x R")\ 0},
where x = (x;, x)ERX R L E=(§,§)e R X R"~! We take the Schwartz
kernel of 4 and B to be

(2.1) k,= f ellri—n—a =W sl g (o vy £ a) dsdda,
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with e € S2"(m, n,1) a product type symbolin &, o;m = 2n + 1,p" = p — n/4,
I!'=1-1/2,s,0 € Rand

(2.2) k,,=fL""‘"”"'"""”"""'""/”"l)(l,y,z,n.'r)dldn(/f,

with b € S7*'(m, n, 1) a product type symbol inn (1, 7), m as above, r' = r — n/4,
s"=s-—n/2, t,7€ R. We first cut off ¢ near § =0, 6 =0 and b near =0,
= 0. Let x € C*(R") be a homogencous function of degree 0 for |§] > 1 such
that x = O near § = 0, x = 1 for |£§| > 1, and let ¥ € C*(R) be a homogencous
function of degree 0 forlo| > 1s.t. X = Onearo = 0, x = 1 for|o| > 1. Then

(23) k,= f el mi=atr-anttsel v (Y S (g )a(s, x, ¥, §,0) dsdédo
+A withd e 177"*R" X R"; A))

and

(2.4) k,,=fe’“"*"" o=y (VS (2) b (e, v, 2, T) dedy dT

+B withBe 1" "R X R"; A,).

Thus we may assunte that ¢ (resp. b) in (2.1) (resp. (2.2)) vanishes near &E=0,
o = 0 (resp. 1 = 0, 7 = 0), sincc the terms A e B, A B can be shown to be in the
appropriate class by @ similar argument to the one used below. We have

(2.5) Kyop= / ety bdydsdédoddydr,
where
oy = (x; =y = $)§ +(x" = y)§ + so,
Sr=(r -z =Dy +(y -+

Let 0 < e < 1, and let v, {resp. X,) be a C*” homogencous [unction of degree 0 in
(£, ) such that x, = 1 for [n] < Yel£), x, = O for n| > el4] if (& m)| =1 (resp.
X2 =1 for |&] < Leln], X, = O for |£| > €y for [(£, 1)} = 1). Integrating by paris
in the y-variable, we can easily show that the term

fc"""'*”"” x,a-bdydsdidedidndr

is smoothing, i = 1,2. We then assume that the amplitude in (2.5) satisfies

(2.6) ' Le - nl < il < 2inl/e onsupp(a-b).

Now making the change of variabless = u + r, 1= -t +r, and y, = —u + v, we
obtain

(2.7) kyop= 2[ eilurnosCut0rlpy gy dr df do dr,

where

(2'3) D= f efltn R RGBS R U L TR AR S Ll VI 7 %1 dy’dnlu'n'.
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In order to be able to apply the stationary phase method, we introduce polar
coordinates in §. Writing w = £/|¢| € $"7, ¢ = |{|w, and making the change of
variables = |{|79 in (2.8), we get

(29)D = ]’ o Hll(xy =0 =)oy Hz" =y )’ Ho =z~ Yy HY' =]

ca-b(u+r,-u+r,x,(-u+v,y),z|¢w,lH, 0,1)ddydy.

Observe that % < 2/¢ on suppa - b ((2.6)). We are now in position to apply
stationary phase in (v, y’, ). We obtain

210) D~ (u/) el
d(u+r,-u+r,x,(-u+v,y)2¢0, ),

where d € S%*""*(n,1,1) is a product type symbol of order p’ + r’, I', s’ in §,
o, 7, respectively; ~ in (2.10) means that

N
(D - Z dj) e sr’+r'—(N+1).!'.:'(",1’1)'
. je=1
whered ~ Ld; asin §1.

Let us now consider )
(2.11) F= [ eltwsnes-usnig gy dr,
Let x,(0, 7), x2(0, 7) be defined in a similar way as above. Then

f el Ne -t T+ =5 =206 W =W 3 ddu dr

is an element of I7*/(R" X R"A,). Therefore, we may assume

(2.12) ielr| < |6} € 2|7|/e onsuppd.

Then we apply the stationary phase Lemma to F in u, 7, with 7 = 7/jo|. Putting
everything together we find that

(213) ky .= f elln=—n=-2nLHx'=y el o(, x ;7 ¢ o) dédoadr,

where ¢ € §7*" is a classical product type symbol in the (£, 6) variables ending
the proof of the theorem.

3. Computation of the principal symbol of A ¢ B. First we compute the principal
symbol of A= B on A — =, where A4, B, A ¢ B are pscudodifferential operators. We
have

o'(A)lA—): = ap’.l‘ (0! X, X, f’ fl)l‘l #0,

o(B)la_s=b,,(0,2,2,88) #0

(see §1). From the proof in §2 it is easy to see that the highest order of
homogeneity of ¢ (as in (2.13)) in § is a, , - b, . Therefore, we conclude that

(3.1) e(AsB)ly_z=0(A)|a-5- o(B)a-sx.
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We next compute the principal symbol of Ao Bon A, — =, We first show that
we can extend the C® function on Ay — 2, o(A4)|,, -y, to a symbol-valued
conormal distribution asscciated to 2 € A,. Let

fsox 38 = [ e a, (s, x, 5, ¢ 0) do,

where ¢ ~ qu» a;as in §1. Fhuxf” € C2(R X R, X Ry; L(R,)). In fact,
is a conormal dxslnbutxon ‘.ssoc.atcd withs = 0. We alao havc (sce §1)

U(A)lAI_E = f/r," (Xl — o (xlv X’), (Ylv X'), (0’ gl))h.*b'.'
Then we extend 0(A)],, - 10 A as an element of
Cw(Ru 1 X “u 1. 91( (x, “)))

—in fact, as a conormal distribution associated with x; = y,. Clearly, (o(4)|,,
V(X,, ¥y)) is @ homogencous function of degree p’ in §’ depending smoothly on x’,
y' V¢ € CP(R?). Let

32 [, = fe”"a(s,x, v, €,m)do, f[p= fe’"b(l, Y, 2,0, 7)dr.
We now write
(3.3) kiop=meK
where 71 R X R X R, X R, = R’ X R, is the projection. K is formally given
by
(3.4) (K,d)= f eV f £ ) dydxdzdEdy
Ve CPRL X R X R, XR)), where
Yy=(x,—y =) +(X =y, do=(n—-2,-1)n +(y' -2
Formally, ‘

(3s) Safur®) = [ Lufutbdsd Vb

as above.

ProrostrioN 3.1, (f, [y, ¢), as in (3.5), is a symbol-velued symbol in §, vy, i.c.,

- —18

|DDEDIDI(fufns )] < Cupoy s+ D" M+ )" 7™
uniformly on compact subscts in (x, z).

Procr. We write

(/A_/”y )= f ety L ds di.
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_We develop a (resp. 8) in a Taylor series around s = 0 (resp. ¢ = 0) and obtain

N
(6 Udnt)=[ T T S

———b
j=0 k=0 ds"

a D*DJ¢ dodr +(Ry, $),

=0

L ad

where the Fourier transform is taken in the s, ¢ variables. The first term in (3.6)
satisfies the estimate in the proposition, since now the amplitude is rapidly

decreasing in o, 7, and we use the estimates for a and b as product type symbols.
(R », ¢) contains terms of the form

¢>a’1'do dt ds

(N+1) 7
i(so+tr) § d
felﬂ' (N+l)‘h~ b

(37) f DN+I(euu)

h bl ¢ drdods,
(N+1) "M},

where the Fourier transform is in the ¢ variable. 4, is the remainder term of order
N + 1 in the Taylor series of a. Integrating by parts in (3.7) in the o variable, we
obtain that, for N large, the integrand in (3.7) is absolutely integrable in 6, 7, and,
therefore, the estimate of Proposition 3.1 is solid for terms of the form (3.4). The
other terms in ( R, ¢) are estimated similarly.

ProPosITION 32. K € @'(R" X R" X R, X R)).

Proor. We may assume £,  # 0. Then we can write (3.4) in the form

(38) (K,¢)= / A A ethH¥( f, /,,.¢) ——I— dy dx dz d& dn,

1€1?

where A, A, denotes the Laplacian in the x and z variables, respectively.
Integrating by parts in the x, z variables, we obtain the result. Thus

s [ €NV gy dyds dg dr

is a well-defined distribution in @2’(R" X R"). Now in order to prove (0.2) we
make the change of variables s = u + r, t = —u+r, y; = —u + v. As in §2 we
apply the stationary phase lemma in v, y’, 1. We obtain

kyp= f /=526 Hx'-)¢)
(3.9) |

Solu+r—u+rx, (2 +r-u.2),2,§) dudrd,
where

e~ (2) E (L2 () b



