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Preface

This book mtroduces the most baste concepts, facts, and techniques of
general topolog at a level appropriate to a student’s first exposure to the
subjecet It 15 suitable as a text for a variety of undergraduate courses of
differing lengths and emphases, and for classes having varying bachgrounds,
some posstble course outlines are suggested below It may even be used for
beginning graduate students who have not previously studied topology as
an introduction to one of the standard advanced texts

The only mathematical prerequisite for reading this book 15 caleulus
No hnowledge of the topology of Euchdean spaces or metric spaces 1s assumed
Some shight prior experience with “epsilonties’” is desirable, but not indis-
pensable, the greater the prior experience, the more material can be covered,
Nether Zorn’s lemma nor ordinal numbers are used

One of our aims has been to assist the student’s mathematical maturation.
Hence carcful attention has been paid to motivating new notions For example,
eleven pages of examples of metrics precede the actual definition of a metric,
and a proof of the compactness of the unit interval (togéther with the corollary
that continuous functions on 1t are bounded) precede the deimtion of com-
pactness There are examples galore of everything Special pains have been
taken to explain the sigmhcance of theorems and to write enough proofs
in cnough detail to provide models for the student’s own proof making In
using a prehminary version of the manuscript the author has found that
students can read much of the text themselves with only minimal gumdance
by the instructor, so that classroom time can be devoted mainty to the exer-
cises and discussion of more difficult points.

Chapter 0 concisely presents the necessary preliminaries on sets, maps,
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countabihty, order-completeness of the real numbers, and equivalence
relations The time spent on this materal will, of course, depend on the
student’s background, but 1t 1s suggested that all students at least read the
chapter rapidly for review and to fix terminology It 1s a good idea to review
the section on equivalence relations in conjunction with the study of quotient
spaces in Chapter 3.

Chapter 1 introduces open sets, closed sets, neighborhoods, continuous
maps, and convergent sequences in metric spaces The terminology used
here—d-closed set, (d,d")-continuous maps, and so on—calls attention to the
particular metrics mnvolved. At the same time the entire thrust of the chapter
15 to justify the later definition of a topological space by demonstrating that
notions of continuity and convergence remain unchanged when the metrics
are replaced by equivalent ones. The section on completeness includes the
Baire category theorem and its application to the existence of nowhere
differentiable, continuous functions Owing to 1its greater techmical dif-
ficulty as well as 1ts treatment of uniform, as distinet from topological, ideas
this section may be postponed or even omitted, except for occasional mention,
completeness does not appear agamn until Section 2 of Chapter 4, where it
15 used to characterize compact metric spaces and to prove the Tychonoff
theorem for a sequence of compact metric spaces

The study of topology proper is begun in Chapter 2, where topologes,
neighborhoods, Hausdorff spaces, bases and local bases, and countability
properties are discussed. Of the whole hierarchy of separation properties,
which 1n 1ts entirety 1s hable to confuse the beginner, only the property T
is dealt with at length in the body of “the text, the others being relegated to
the exercises,

Continuity 1s the theme of Chapter 3 Here product and quotient spaces
are constructed and their mapping properties are emphasized Here, too,
the theory of convergence of nets 1s introduced at a level kept elementary
by treating subnets only briefly and by avoiding universal nets entirely
This theory deserves to be included in a first topology course It places
sequential convergence in proper perspective, facilitates a later study of
filter convergence, and reveals the diverse kinds of hmits the student has
previously encountered as mstances of a single unifying concept. Neverthe-
less, the treatment of nets can be omitted without substantial loss the
only places nets are used again are the net characterization of compactness
(4 27), which can 1tself be omitted, and the sequence charactenzation of
compactness of a metric space (4.36), which requires only the equivalence
of sequential clustering with subsequential convergence (3.69)

The elementary facts about compactness are developed in Chapter 4.
Because we avoid Zorn’s lemma, the Tychonoff theorem is proved only for
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the product of finitely many spaces and separately for the product of a
sequence of metrizable spaces. Sequential compactness and other variants
of compactness are not studied in their own right, only as equivalents of
compactness in the metrizable case. Also considered for metric spaces is the
relationship of compactness to uniform continunity and to completeness.
The discussion of locally compact spaces includes the one-point compactifica-
tion.

The first three sections of Chapter 5 present the standard faets about
connected sets, components, locally connected spaces, and path-connected
spaces. This material, which is technically if not conceptually simpler than
that on compactness, can be read before Chapter 4. The final two sections,
on homotopy, culminate in proofs of the Brouwer fixed-point theorem in
dimension 2 and the fundamental theorem of algebra. The only thing about
compactness needed in these two sections is the existence of a Lebesgue
number (4.41) for an open cover of the unit interval or of the unit square.
In order to keep the algebraic machinery to a minimum and make things
geometrically more transparent, our treatment of homotopy avoids explicit
mention of the fundamentai group (except in the exercises).

The exercises, found at the end of each section, number 583 in all, Ranging
in difficulty from the routine to the challenging, they are meant hoth to test
comprehension of the ideas presented in the text and to provide applications,
additional cxamples, and extensions of these ideas. Many ecall not just for
proofs, but for answers to such questions as “Is it true that ... ?’ or “What
can be said about . . . ?” or “Is there an analog . . . ?”’ Included in the exercises
arc a number of topics this author did not deem so essential to a first course
in topology to have included them in the text proper, but which are interesting
and important in their own right. These topics are as diverse as completion
of a metric space, Ty and T)-spaces, Cartesian sum topologies, manifolds
with boundary, topological groups, the’closed-graph theorem, cut points,
and the fundamental group.

There are surely more exercises than an instructor would want to assign
to any one class. We have therefore appended a Guide to the Exercises in
which we cite each exercise needed for exercises in suhsequent sections.

All definitions, theorems, and examples within a single chapter are numbered
consecutively, so that 3.15 refers to the fifteenth item in Chapter 3. The
exercises in each chapter are separately numbered consecutively; a reference
to the fifth exercise of Chapter 3 would be “Exercise 5 if made within that
chapter, but “Exercise 3.5” if made in another chapter.

The Bibliography includes only those books and articles referred to in
the text or suggested for further reading. References to bibliographic entries
are made by numbers enclosed in brackets. Appended to the Bibliography



x PREFACE

is a list of suggested readings on special topics about which individual students

might report to the class.

Suggested course outlines The list below is not meant to be exhaustive,
but only suggestive of possible courses that can be based on this text. The
portion of the text covered by any given class will, of course, depend on the
students’ preparation; it will also depend heavily on the number and difficulty

of problems assigned from among the many we have provided.

A minimal course (1 quarter or 1 semester)

Chapter 0 Sections 1 through 5

Chapter 1 Sections 1 through 4

Chapter 2 omit 2.41, 2.42, and 2.56(5) and (8)

Chapter 3 Section 1 except 3.11(2); Section 2 except 3.22(3) and 3.23;
Section 3 through 3.40, except 3.35(5) ;
Section 6 of Chapter 0; Section 4 except 3.49(7) through (9);
Section 5 through 3.54

Chapter 4 Section 1 except 4.27

Chapter 5 Section 1 except 5.25 and 5.26;

Section 2 through 5.33 or 5.35(4) ;
Section 3 through 5.51—optional

A second course in lopology (1 quarter or 1 semester)
Chapter 1 Section 5 . '

Chapter 2 241 and 2.42

Chapter 3 Section 3 from 3.41; Sections 4 and/or 5
Chapter 4 4.27 (if Section 5 of Chapter 3 is included) ;

Sections 2 and 3, or 4.41 through 4.44 and Section 3 through 4.56

Chapter 5 Section 2 from 5.34; Sections 3 through 5
Additional readings or individual projects (see the Bibliography)

A complete course (2 semesters or 3 quarters)
Chapters 0 through 5
Additional readings or individual projects

A standard course—emphasis on geomeiry
_ (1 semester or 2 quarters)
‘Chapter 0 Sections 1 through 5
Chapter 1 Sections 1 through 4
Chapter 2 omit 2.41, 2.42, and 2.56(5) and (6)
Chapter 3 Section 1 except 3.11(2) ; Section 2 except 3.23;
Sections 3 through 3.40; Section 6 of Chapter 0;
Section 4; Section 5 through 3.53
Chapter 4 Section 1; Theorem 4.41
Chapter 5 omit 5.35(5) ; include Exercises 5.97, 5.98, 5.107
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A standard course—emphasts on analysis
(1 semester or 2 quarters)
Seetions 1 through 5
include Exercises 1.85 and 1.86

Sections 1 through 3; Section 6 of Chapter 0;
Section 4 except 3.49(7) through (9); Section 5

Section 1; Section 2 through 5.33;
Section 3 through 5.51—optional

A brief course in set theory (3 1o 5 weeks)

A short course on metric spaces (8 weeks)
Sections 1 through 5
include Exercises 1.13, 1.14, 1.68, 1.85 through 1.89

A course in special topics (variable time)
1.71 through 1.73; 1.69, 1.70, and Exerciscs 1.85 and 1.86
3.23 (include Example 1.9 and Exercise 1.23)
4.28 and 4.29; 4.41
Examples 5.35(5) and/or 5.52;
Seetions 3 through 5 )

Acknowledgments My students at the University of Massachusetts spotted
numerocus errors and detected defects in exposition in a preliminary
version of this text. Professor Victor Klee and several anonymous reviewers
corrected some infelicities of style and suggested many improvements. Miss
Margo Vidrine and Mrs. Rita Warner speedily and accurately typed the
manuscript. To all these people I express my gratitude for making this
book possible.
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CHAPTER

¢

Sets and Maps

In this preliminary chapter we collect some essential facts about sets and
maps used throughout the text. Much of thiy material will doubtless not be
new to the reader and is therefore covered rapidly, with few examples or
proofs, to remind him of what he already knows and to fix the particular
terminology and notation adopted here. Those topics that are likely to be
less familiar—countability, order-completeness of the real numbers, and
équivalence relations—are covered in somewhat greater detail. For a fuller
treatment of these preliminaries at an elementary level see Fairchild and
Tonescu Tulcea [10] or Foulis [12]; for an advanced, axiomatic treatment
see Eisenberg [9]

1. SETS

Two logical connectives will be used frequently:
=> means implies or if . . , then,
<> means if and only .

A set is a collection of mathematical objects. If = is one of the objects
comprising a set X, we write

2€X

and say that z is an element, member, or point of X and that z belongs to X ;
mn the contrary case we write

z ¢ X.
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Two sets X and Y are equal to one another, in symbols
X =Y,
precisely when they have the same elements, that is, when
T€X & zeY.
When it is not the case that X = Y, we write
X#Y.

Similar use of a slash mark to negate a statement will be made in the future
without further explanation.

Two notational devices are used to specify particular sets. The first simply
lists or indicates the elements of the set between braces. For example,

{ - 1; 1 }
is the set having the two elements —1 and 1, and
{2,4,6,...)

is the set of all even positive integers (since the latter set is infinite, its ele-
ments cannot all be listed explicitly, but their identity is supposed to be
implicit in the few actually listed in conjunction with the context).

The second device uses the notation

{z{ P}

to specify the set consisting of those objects £ having a given property P.
For example, if R denotes the set of all real numbers, then

fxlz e Ra* =1} = {—1,1};

this set, which consists of those elements of the set R satisfying a certain
condition, may also be specified by the modified notation

{r€ R|z2=1}.

Because the vertical bar | is also used as part of other notations (for example,
for absolute value), a colon is sometimes used in place of the vertical bar
in {z | P} to avoid confusion. Thus

iz e Rzl =1} ={—1,1} = {z € R:|z] = 1}.
0.1 Special sets. If z is an object, then the stngleton

{z}

is the set having the lone member z; the set {z} is just as different from the
object x as a caged lion is from a loose lion. The empty sef is the set &f having
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no members at all. Thus
zlz#z) = ={rcR|r <zl

Any other set is nonempty.
Some sets of numbers for which we reserve special notation are.

N = the set of all natural numbers = {0,1, 2, ...}
Z = the set of all integers = { ..., —2,—1,0,1,2,...}
Q = the set of all rational numbers
R = the set of all real numbers
C = the set of all complex numbers
I ={zcR|0<z<1)

0.2 Subsets. We say that a set X is contained wn a set Y, call X a subset
of ¥, and write

XCY
to mean each element of X is an element of Y, that is,

z€EX = z€V.

We also write

Yox
to mean the same thing and then say that Y contains X. For example,

NCZCQCRCEC, RDI,
but

1q Q.
If z is an object, then
2} CX & z2z€X.

The empty set is a subset of every set X:
ZCX.

(Proof: Since £ has no elements at all, it does not have any element that
fails to be an element of X.)
Evidently

X=Y & XCVY and YCX.

Thus the inclusion X C Y does not preclude the possibility that X = Y,
When X C Y but X = Y, we call X a proper subset of Y.

The language of subsets may be used to state the principle of mathematical
tnduction:

Let E C N. Suppose 0 € E and suppose
n+ 1€ E whenever n € ¥ Then E = N,
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This principle, which we accept as a fundamental property of the natural
numbers, is the basis for “proof by induction’’.
To illustrate proof by induction, let us prove

* 2" >n (n € N).
First, 2 = 1 > 0. Next, suppose n € N and

2n > n.
If n > 0, then

2n+l = 2.gn ,
> 2-n {(by the assumption 2" > n)
=n+n=>n+1;

if n =0, then 27! =2 > 1 = n + 1. Thus 2" > n 4+ 1 whenever 2» > n.
This proves (*), for if we let

E={n¢c N|2" > n},

then £ C N, and we have shown that 0 €- E and that n + 1 € E whenever

n € E; hence from the principle of mathematical induction we can conclude
that E N.

The power set of a given set X is the collection
®(X) = {A}lA CX|
consisting of all the subsets of X. For example,
®({0,1}) = {, {0}, {1}, [0, 1}}.
In general,
geceX), XceoX)
for any set X.

0.3 Union and intersection of two sets. Let 4 and B be sets. The union
of A and B is the set

AUB = {z|x € Aorz € B}

of all those objects that belong to at least one of the sets A and B. The inter-
section of A and B is the set

AnB={z|z€ A,z € B}

of all those objects that belong to both of the sets A and B. The set 4 is
disjoint from B when

N

AnNB =g,

that is, when 4 and B have no elements in common; A intersects B in the
contrary case.
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Some handy formulas concerning union and intersection are:
ANBCACAUB
Aud=4=4An4

AU = 4 ” ANGg =g

AUB =BUA AnB=BnA4
AU(BUC) = (AUB)UC A0 BAC) =(AaB)NC
AU(BNC) = (AUB)N(AUC) ANn(BUC) = (ANB)U(ANC)

AuB=B = ACB & AnB=A4

0.4 Complements. For sets A and X, the complement of A in X is the set
X\Ad =f2aeX|zd 4}

of those elements of X that do not belong to A. IFor any sets A and X:

X\@ = X X\X = &
AUX\AD) =X An(X\A) =&
X\(X\A) = 4

If A and B are subsets of X, then
. ACB = X\BCX\A
For any sets X, A, and B, ,
' X\(AUB) = (X\4) n (XY\B),
X\(ANnB) = (X\A) U (X\B).
These two De Morgan’s laws will be generalized in Section 3.
0.5 Orcdered pairs and products. The ordered pair (x, y) formed from

objects x and y is a new object in which z is the first coordinate and y is the
second coordinate. Equality of ordered pairs is governed by the rule

(,y) = {a,d) & zx=a and y=b.

[It is interesting, but unnecessary for our needs, to know that (z, y) may
be defined as {{x}, {z,¥}}; then the preceding rule may be deduced from
this definition.’] Observe that {x, y) is not the same thing as {x, y}: although

{z, ¥yl = {y, =}

- for any z and y,

z#y = (1,9 # (y, 7).
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The product of two sets X and Y is the set
XIXY={@zylzcX yeVY]

of all ordered pairs whose first coordinate belongs to X and whose second
coordinate belongs to Y. Clearly

XXY#d & X#Z and ¥V #gZ.
A subset R of X X Y is called a relatton tn X fo YViforx € Xandy € Y

we vrite
zRy
to mean
(¢, y) € R
and interpret this statement to say that R “relates y to z”. For example,
the usual ordering of R is the relation
= {(z,y) € RX Rz <yl

which satisfies
Ry & z<y (z,y € R).

(Here the parenthetical expression on the right means “for every z ¢ R and
for every y € R” and qualifies the statement to its left.)

EXERCISES

1. (a) Do there exist two sets each of which is a proper subset of the other ?

(b) If X is a proper subset of ¥ and Y is a proper subset of Z, must X be a proper
subset of Z?

2. Given a real number ¢ > 0, find a real number § > 0 such that
zilz— 1 <8 C{r:|(Bz— 1) — 2|<e}
3. Let
’ A={g}, . B={d 4}, C={g& 4, B}
(a) Compute the union and intersection of each pair of these three sets.
{b) Compute ®(A),®(B), and ®(C).
(¢) Considering A, B, and C together with all the sets you computed in (a) and

{b), determine which are elements of others, which ‘are subsets of others, and
which are equal to others.

4. Let ‘
A={z€R|22< 2}, B={z€ R|a2=2}.

(a) Compute and draw pictures of the sets A UB, A N B, R\ 4, and R\ B.
(b) Compute BNQand ANZ.

5. Establish the absorption laws
(AUB)NB= B, (ANB)UB= B.
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6. Exhibit subsets A and B of R for which:
{a) R\ (4 UB) = (R\ 4) U(R\B).
(b) R\ (4 nB) » (R\ 4) n (R\B).

7. Let A and B be subsets of a set X. Prove:
(a) A=B & X\4=X\B
(b) ACB & AN(X\B) =d&.

8. (a) Express the intersection (A X B) N (C X D) of products as the product of
two sets.

(b) Show by example that a union (4 X B) U(C X D) of products is not neces-
sarily s product of two sets.

9. For which sets X and Y does X X ¥ = ¥ X X?
10. Determine all relations in {0, 1} to {0, 1}.
I let X={z{zd x}.1sX € X?Ifnot,is X ¢ X?

2. MAPS

A map (or function)
: [ X—-Y

Jrom (or on) X to (or into) Y consists of sets X and Y together with a rule f
which assigns to each = € X a unique element f(z) € ¥ called the value of
J at . The set X is the domain, the set Y is the codomain, and the rule f is
the graph of the map. [ It is unnecessary for our purposes to know that such
s “rule’’ is actually a relation f C X X ¥ such that for each 2z ¢ X there is
exactly one y € Y with (z,y) € f, and then y = f(z).]
Let f: X — Y be a map. If z € X and y = f(z), we write
zy
and say that f sends or maps z to y. When f{z) is specified by a single formula
involving z for arbitrary z € X, we write
[ X->Y

z > f(x).
fiR=-R

7 > gt

For example,

is the map from R to R such that
f(x) = 22 (z € R).

Sometimes several formulas specifying f(z) are needed for various parts
of the domain to which z might belong. For example, if 4 C X, then the



