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Series Preface

Mathematics is' playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the classical
techniques of applied mathematics. This renewal of interest, both in research
and teaching, has led to the establishment of the series: Texts in Applied
Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with and
reinforce the traditional methods of applied mathematics. Thus, the purpose
of this textbook series is to meet the current and future needs of these
advances and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the _Applied
Mathematics Sciences (AMS) series which will focus on advanced textbooks
and research level monographs.
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The material in this book is based on notes for a course which I gave
several times at Brown University. The target of the course was juniors and
seniogs majoring in applied mathematics, engineering and other sciences. In
actua fact, the students ranged from occasional highly preparcd freshmen
to grfduate students. The last category usually made up one third to one

half of the class. Overall, I would say that the students found the contents -

of the book challengmg and exacting.
My basic goal in the course was to teach standard methods, or what I

regard as a basic bag of tricks. In my opinion the material contained here,
for the most part, does not depart widely from traditional subject matter.
One such departure is the discussion of discrete linear systems (and this is
really just a return to classical material). Besides being interesting in its
own right, this topic is included because the treatment of such systems leads
naturally to the use of discrete Fourier series, discrete Fourier transforms,
and their extension, the Z-transform. On making the transition to con-
tinuous systems we derive their continuous analogues, viz., Fourier series,
Fouricr transforms, Fourier integrals and Laplace transforms. A main ad-
vantage to the approach taken is that a wide variety of techniques are seen
to result from one or two very simple but central ideas. Students appeared
both to grasp and to appreciate this consoliation of concepts. :

Related to this and a recurrent theme in this text is the idea of trans-
forming a problem to another simpler problem. This in turn leads to the
use of eigenfunction methods. Virtually every method developed here is
also derived by an eigenfunction approach. Moreover, some weight is laid
on this being a natural way to view and analyze problems. This then leads
to the geometrical point of view and to the introduction of abstract spaces.
Since I felt that this was a very desirable approach I went to some lengths
~ to motivate these ideas and make learning them as painless as possible.

As the remarks thus far imply I have placed emphasis on presenting a
variety of approaclies and perspectives—as many as I deemed possible. This
is in keeping with a gencral principle which I subscribe to, namély that a
deeper understanding of a subject is gained by viewing it from as many
aspects as possible. ‘ .

There are two basic prercquisites for this course: linear algebra and or-
dinary differential equaticns. The latter on the level of, for example, the
books by Braun and by Boyce and DiPrima. A list of refelences appears
at the end of the book.) It 1s’a]so appropnate to mention a worej about the
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first three chapters which cover basic topics in complex variable theory. If
one views this as a course in applied. .complex analysis then the first three
chapters are the underpinnings. This portion of the course was taught in
roughly five'weeks and since a broad range of topics are included some sac-
rifices were required. Consequently there was no intention of having this .
course replace the traditional complex variable course. If anything I con-
tend that the standard material in complex variable theory will be better
appreciated by the student after a course of this type.

Above all, this course is intended as being one which gives the student a
can-do frame of mind about mathematics. Too many math courses give the
impression that mathematics is a minefield and that unless one is very very
careful disasters will befall them. My view and the one that I have tried
to present in this book is diametrically opposed- to this. Stuacnts should
be given confidence in using mathematics and not be made fearful of it.
Partly with this in mind I have forgone the theorem-proof format for a
more informal style. Although I have endeavored to make the mathematics
respectable, rigor has not been given a high priority. Finally a concerted
effort was made to present an assortment of examples from diverse applica-
tions with the hope of attracting the interest of the student, and an equally
dedicated effort was made to be kind to the reader.

Only the help of many people made the completion of this book possi-
ble. Madeline Brewster and Andria Durk prepared an earlier version and
played an essential role in assembling the present version; Kate MacDougall
painstakingly and patiently prepared this final version. My colleague and
friend Jack Pipkin performed the experiment of teaching this material from
an earlier version of the manuscript. His criticism (sometimes severe) of-
ten took root. I take pleasure in expressing sincere gratitude to them all.
Finally no words can express my deep appreciation to Candace Kent who
took the course, corrected my errors, mathematical and otherwise. Her
many improvements appear throughout the text. The blemishes, flaws and
errors that remain are due to me and are there in spite of the best efforts
of all these people. Finally thanks, with mixed feelings, also go to the late
Walter Kaufmann-Bihler for sweet-talking me into writing this book.

I dedicate this book to the memory of my mother, Libby, who was my
first and best teacher.

L.S.~
Saltaire
July, 1988
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1

Complex Numbers

1.1 Complex Numbers

The concept of tmaginary numbers occurs early in the discussion of alge-
braic equations. For example, the quadratic equation

2241=0
has the solutions z = i, where i = /—1. In general, hybrid forms, called
complez numbers, are found containing both real and imaginary parts. For

example, if
2
2°-2z+4+2=0,

then
z=1+1:

are the solutions. Complex numbers, which extend the real number sys-
tem, are made necessary by the solution of algebraic equations with real

plex coefficients have solutions which are complex—no further extensiofi’is

necessary.
""Complex numbers can be viewed as belonging to a two-space “called the

complez plane (see Figure 1.1). According to common cgiention, a typical
complex number is denoted by the letter z, with

z=2z+1y.
We also define the real and imaginary parts through

z=Rez, y=Imz. (1.1)

y-axis z-plane

) Z= x+iy

X-axis

FIGURE 1.1.

\2‘?,’
coefficients. It is interesting to note that algebraic equations with com- -
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2,42,

FIGURE 1.2.

The addition of the !;wo complex numbers
n=z1+1iy, z22=2T2+iy
follows the rules of vector addition in two-space:
z=n+n=n+z2+iy +32) =22+ 2.

Both this operation and that of subtraction are indicated in Figure 1.2.
The figure is familiar from analytical geometry and further explanation is

not deemed necessary. .
Complex numbers can be multiplied in the ordinary way and this differs

from Cartesian two-vectors. In particular,

nzy = (21 +iy)(z2+iy2)
= (2122 — n1y2) +i(z142 + Zayy) = 2221,
where i2 = —1 has been used. Actually, the explicit appearance of i can be
avoided by writing 4 '

z=(z,y)
and defining
2y + 22 = (21 + Z2, 1 + ¥2),
2123 = (2123 — Y1Y2, Z1Y2 + Z2y1)-
Such rules can be used to generate a complex arithmetic for use on a

computer.
As usual, division is the operation inverse to that of multiplication. Thus

z is called the quotient of a and b if bz = a. If we write a = a; + iay,
b = by + b, and z = z + y, then

bz = (b1 + ibz)(z + iy)
(brz — bay) + i(baz + b1y) = a1 +ia2.-
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This complex equation can be put into the form of a matrix problem:

s)(5)-(3)

by b y ay /'
Thus solving b2 = a is équivalent to solving a 2 x 2 linear system, but not
all 2 x 2 linear systems can be put into this complex form. It follows from
the construction of complex numbers that in a complex equation the real

and imaginary parts are separately equal. Thus we are led to two linear
equations in = and y which, when solved, yields

a;b; + azbs 'i—albz + azb,
b? + b2 b? + b3

z+iy=

The denominator b + b3 is the squared distance of the complex number
by + b, from the origin. More generally, if 2 = z + iy, its distance from the
origin is denoted by

" r=|z] = mod z = (z% 4+ ¢y?)'/? (1.2)
(mod, sho\;x for modulus). We can also write
. 1212 = 22 + ¢* = (z + iy)(z — iy) = 2Z.
The last exbression defines the complex conjugate; i.e., if z = £ + iy, then
Z = z — iy. (In certain instances the complex conjugate of z will also be |

denoted by z*.) The conjugate is useful in representing the division of two
complex numbers in terms of real and imaginary parts:

z _23:71 _TiT2t yi1yz | . —T2y1 + 21y

zy 21T z? +y} z? + yi

We mention also that since z can be determined from z, 7 is really a function
of z; i.e., formally Z = Z(z). Figure 1.3 indicates the location of these

quantities.

Polar Coordinates

Equation (1.2) defines the modulus of a complex number z. To complete
the transformation from Cartesian to polar coordinates, we define the pos-
itive polar angle # as being the angle measured counterclockwise from the
positive real axis to the ray to z (see Figure 1.3.). For negative #, mea-
surement is made in the clockwise direction. The angle 8 1s also written
as

¢ = arg z,

where arg is short for argument. ’

It is clear that 6 has the property
y

tan § = =,
z
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X

FIGURE 1.3.

which can be formally solved to give

6 = tan™? (1.3)

8 |

However, it should be recalled that the arctangent is customarily defined
with its range as the open interval (—x/2,7/2) (see Figure 1.4); therefore,
some fine print is required along with (1.3). For example, if we consider
the case where § € [—,#], then 8 is given by (1.3) for z > 0 and 0 =
tan~!(y/z) + « sign y for z < 0. (See Exercise 7.)

/2

-] .
v=tan u

// -m/2

FIGURE 1.4.
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1.2 Exponential Notation

The exponential function e® for real a and ¢ is defined by the convergent
infinite series

e = Zo (_a’;!)_"_ = exp(at). (1.4)

This can be regarded as the solution of the initial value problem

d

—J;E =aw, w(0)=1.
If a is complex, the meaning of the series is not clear since we have not
yet considered the idea of the convergence of a sum in the complex plane.
For the moment we accept the above definition of the exponential as being
valid for complex numbers (this will be justified in the next section).

If a = ¢ in (1.4), then formally

00 pun 2 43 4
it _ et ., ot it t
e _z; = -—1+1t——2—-—3!+a—!+
n=

" 2 1 o,
= <1_.2_!.+a+...)+1(t_.3_!+...)_

We recognize the sum in the first set of parentheses first as cos t and the
second as sin {. Thus we have shown

€' = cos t + isin ¢. (1.5)
Further, from the differential equation, if

dor w22
a Ay g

then cross-multiplication gives

= azwa2,

dw1w2
dt

= (a1 + az)wiwy,

which demonstrates that
et — gaat — (ar1taa)t
for complex a; and a,. In particular,
e’ = e"tY = e"e™ = e%(cos y + isin y).
If we return to polar notation using (1.2) and (1.3), then

z = zH+ity+rcosf+irsinb
= r(cos 0 + isin 6),
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which from (1.5) states

z=1z+iy=re?’. ‘ (1.6)

If this notation is applied to the product z:z;, where z; = rie®' and
29 = r2¢'%7 then

2129 = (rleia‘)(rgeio’) = rxrze"(é‘”’),
from which we have
arg z1z; = arg z; + arg z3,

mod zy 23 = |2122| = riry = (mod z; )(mod z3). (1.7)
Therefore, under multiplication, arguments add and moduli multiply.
De Moivre’s Formula

Consider z" for inteer n. If we use (1.6), then

2" = (re*?)" = r"e*? = " (cos nf + isin nb);

or, if |z] =r =1, then
'™ = cos nb + isin nf = (cos 6 + isin #)", (1.8)

which is known as De Moivre’s Formula (or' Theorem). If, for example, .
n = 2, this says
e*® = (¢'°)% = (cos 8 + isin §)?

= cos®8 —sin? 8 + 2isin @ cos¥,

cos 20 + i sin 26

k]

the real and imaginary parts of which give the familiar trigonometric rela-

tions
cos 26 = cos® f —sin2 4

and
sin 20 = 2sin & cos 0.

In general, De Moivre’s Formula facilitates the demonstration of many
trigonometric relations.

Roots of a Complex Number

If, for complex numbers w and z and integer n, we have that
w” =z,

then w'is said to be an nth root of 2 and is written as z1/7 To find w, first

write

w= Re'®, 2z =re
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exp [2wik/3] exp [2wik/4]

_exp [27ik/5)

FIGURE 1.5.

so that . )
wh = Rnenne - re.o‘

On comparison of'moduli and arguments, we obtain

R*=r, nO=60+2xN.

The term 27N with integer N is included since arg is ambiguous up to an
integer multiple of 2m; i.e., exp(i8) = exp[i(f + 2N 7)]. If we solve for R and

O, then
R=rl/"

and
= 2 +27r-}!, N=0,1,...,n—-1.
n n
These form the only choices for © since any other integer choice of N will
yield a © which differs from one of the above by a multiple of 2x.
As a particular example, consider the nth roots of unity as determined
by

wh =1,
From the above discussion, the n different roots are

wp =2/ k=0,1,...,n— 1.



