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_ ADVERTISEMENT

What is electrodynamics and where does it fit into the
general scheme of physics?

FOUR REALMS OF MECHANICS

In the diagram below I have sketched out the four great realms of mechanics:

: S Quantum Mechanics
c"“'(c;:x:‘?mi“ (ScHtodinger, Heisenberg,
Bohr et al.)

Higher
Speeds

Quantum Field Theory
Relativistic Mechanics .a s F_ -

e e (Dirac, Pauli Schwinger,

(Einstein)

. Feynman et al.)

—_

Smaller Distances

Newtonian mechanics was found to be inadequate in the early years of this
century—it’s all right in “everyday life,” but for objects moving at high

, P
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speeds (near the speed of light) it is incorrect, and must be replaced by
special relativity (introduced by Einstein in 1905); for objects that are
extremely small (near the size of atoms) it fails for different reasons, and is
superseded by quantum mechanics (developed by Bohr, Schrddinger,
Heisenberg, and many others in the twenties, mostly). For objects that are
both very fast and very small (as is common in modern particle physics), a
mechanics which combines relativity and quantum principles is in order: this
relativistic quantum mechanics is known as quantum field theory—it was
developed in the thirties and forties, primarily, but even today it cannot claim
to be a completely satisfactory system. In this book, save for the last chapter,
we shall work exclusively in the domain of classical mechanics, although the
theory of electromagnétism extends with unique simplicity to the other
three realms. (In fact, the theory in most respects automatically obeys special
relativity, for which it was, historically, the main stimulus.)

FOUR KINDS OF FORCES

Mechanics tells us how a system will behave when subjected to a given
force. There are just four basic forces known (presently) to physics: I list them
in order of decreasing strength:

1. Strong
*2. Electromagnetic
3. Weak

. 4. Gravitational

The brevity of this list may surprise you. Where is friction? Where is the
“normal” force that keeps me from falling through the floor? Where are the
chemical forces that bind molecules together? Where is the force of impact
between two colliding billiard balls? The answer is that al/ these forces are
electromagnetic. Indeed, it is scarcely an exaggeration to say that we live in an
electromagnetic world—for virtually every force we experience in everyday
life, with the exception of gravity, is electromagnetic in origin.

The so-called “strong” forces, which hold protons and neutrons together
in the atomic nucleus, have extremely short range, so we do not “feel” them,
in spite of the fact that they are a hundred times stronger than electrical forces.
The “weak” forces, which account for certain kinds of radioactive decay, are
not only of short range; they are far less powerful than electromagnetic ones
to begin with. As for gravity, it is so pitifully feeble (compared to all the
others) that it is only in virtue of huge mass concentrations (like the earth and
the sun) that we ever notice it at all. The electrical repulsion between two elec-
trons is 102 times as large as their gravitational attraction.
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Not only are electromagnetic forces overwhelmingly the dominant ones
in everyday life, they are also, at present, the only ones that are completely
understood. There is, of course, a classical theory of gravity (Newton’s
universal law of gravitation) and a relativistic one (Einstein’s general rela-
tivity), but no quantum mechanical theory of gravity has ever been very
successful (though many people are still working on it). At the present time
there is a rather cumbersome candidate theory for the weak interactions,
and a strikingly beautiful one (called “chromodynamics™) for the strong
interactions. Both theories draw their inspiration from electrodynamics;
neither can claim conclusive experimental confirmation at this stage. So
electrodynamics, a beautifully complete and successful theory, has become a
kind of reference point for physicists: an ideal model that all other theories
strive to emulate. v .

Classical electrodynamics was worked out in bits and pieces by Franklin,
Coulomb, Ampére, Faraday, and others, but the man who put it all together
and built it into the compact and consistent theory it is today, was James
Clerk Maxwell. The theory is now a little over a hundred years old.

THE UNIFICATION OF PHYSICAL THEORIES

In the beginning, electricity and magnetism were entirely separate subjects.
The one dealt with glass rods and cat’s fur, pith balls, batteries, currents,
electrolysis, and lightning; the other with bar magnets, iron filings, compass
‘negdles, and the North Pole. But in 1820 Oersted noticed that an electric
current could deflect a magnetic compass needle. Soon afterward, Ampére
correctly postulated that all magnetic phenomena are due to electric charges
in motion. Then, in 1831, Faraday discovered that a moving magnet generates
an electric current. By the time Maxwell and Lorentz put the finishing touches
on the theory, electricity and magnetism were inextricably intertwined. They
could no longer be regarded as separate subjects, but rather as two aspects -
of a single subject: electromagnetism.

Faraday had speculated that light, too, is electrical in nature. Maxwell’s
theory provided spectacular justification for this hypothesis, and soon
optics—the study of lenses, mirrors, and prisms, and interference and diffrac-
tion—was incorporated into electromagnetism. Hertz, who presented the
decisive experimentél confirmation for Maxwell’s theory in 1888, put it this
way: “The connection between light and electricity is now established . . ..
In every flame, in every luminous particle, we see an electrical progess. ...
Thus, the domain of electricity extends over the whole of nature, It even
affects ourselves intimately: we perceive that we possess...an electrical
organ—the eye.” By 1900, then, three great branches of physics, -electricity,
magnetism, and optics, had merged into a single unified theory. (And it was
soon apparent that visible light represents only a tiny “window” in the vast
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- spectrum of electromagnetic radiation, from radio through microwaves,
infrared and ultraviolet, to X-rays and gamma rays.)

Einstein dreamed of an even grander unification, which would combine
gravity and electrodynamics, in much the same way as electricity and magne-
tisrn had been combined a century earlier. His “unified field theory” was not
particularly successful, but in recent years the same impulse has led to a very
promising scheme which join: glectromagnetic and weak forces. If this theory
(for which Weinberg, Salam, and Glashow won the Nobe] Prize in 1979)
survives the test of time, the catalog of forces will shrink to three: strong,
electromagnetic-weak, and gravitational. And who knows, perhaps one day
we shall recognize that these are all really manifestations of a single force.

THE FIELD FORMULATION OF ELECTRODYNAM(CS

The fundamental problem a theory of electromagnetism hopes to solve is
this: I hold up a bunch of electric charges here (and maybe shake it)—what
happens to some other charge, over there? The classical solution takes the
form of a field theory: we say that the space around an electric charge is per-
meated by electric and magnetic “fields” (the electromagnetic “odor,” as it
were, of the charge). A second charge, in the presence of these fields, experi-
ences a force; the fields, then, transmit the influence from one charge to the
other. :

When a charge undergoes acceleration, a portion of the field “detaches”
itself, in a sense, and travels off at the speed of light, carrying with it energy,
momentum, and angular momentum. We call this electromagnetic radiation.
Its existence invites (if not compels) us to regard the fields as independent
dynamical entities in their own right, every bit as “real” as atoms or baseballs.
Our interest accordingly shifts from the study of forces between charges to the
theory of the fields themselves. But it takes a charge to produce an electromag-
netic field, and it takes another charge to defect one, so we had best begin by
considering the nature of electric charge.

PROPERTIES OF ELECTRIC CHARGE

1. Charge comes in two varieties, which we call plus and minus, and they
are such that a minus tends to cancel a plus (if we have +-¢ and —gq at the
same point, electrically it is the same as having no charge there at all). This
may seem too “obvious” to warrant comment, but I encourage you to think
sometime of the other possibilities: what if there were eight or ten different
species of charge? Or what if the two kinds did not tend to cancel? The
astonishing fact is that plus and minus charges occur in exactly equal



