Elements of
Pulse Circuits

F.JM.FARLEY

METHUEN'S MONOGRAPHS
ON PHYSICAL SUBJECTS




Elements
of Pulse Circuits

F. J. M. FARLEY

M.A., Ph.D. (Cantab)

Senior Lecturer in Physics, Auckland University College,
Auckland, New Zealand

LONDON: METHUEN & CO. LTD.
NEW YORK: JOHN WILEY & SONS INC.



First published in 1956

ERRATUM

On pp. vii, 33-35, 90, 106 and Index for
‘cascade’ read ‘cascode’.

[Publisher’s note : This error was inadvertently introduced
after the author had corrected his proofs for press.)

CATALOGUE NO. 4061/U (METHUEN)
PRINTED IN GREAT BRITAIN
AT THE ABERDEEN UNIVERSITY PRESS
AND BOUND BY ORROCK AND SON

. e e i,



PREFACE

THiS book is addressed primarily to physicists and research
workers who wish to obtain an introduction to pulse circuits.
It is assumed that the reader is already familiar with radio
valves and elementary receiving technique, and accordingly
the fundamentals of radio practice are either taken for granted
or reviewed briefly: the application to pulse waveforms is
then tackled immediately.

Although mathematical statement is used occasionally in
the interests of brevity and precision, the approach is mainly
non-mathematical, the emphasis being on a direct under-
standing of the physical principles involved. It is hoped that
the book will be of service to radio workers generally and,
therefore, while connections are made with advanced physics
they are never essential to the argument. In particular
certain topics are omitted because the general reader will not
have the equipment to deal with them (notably the use of
transmission lines for pulse shaping).

In an introductory volume such as this it is impossible to
give a detailed acknowledgement to all sources of information.
No attempt is made to trace circuits to their source and
references are given only for the benefit of the reader who
wants to pursue the subject further. I would, however, like
to express here my thanks to all those who have contributed
either in conversation or in print to my studies and therefore
to this book. In particular I gratefully acknowledge the
assistance received in composing the manuscript from my
colleagues Mr. J. B. Earnshaw and Dr. H. A. Whale.

F. J. M. FARLEY.

Harwell,
Nov., 1955
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CHAPTER 1

BASIC CONCEPTS

1.1. Pulse waveforms. In radio communication the usual
practice has been to consider only sinusoidal waveforms.
We are well aware, of course, that a typical speech waveform
is far from sinusoidal; the simultaneous presence of several
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FiG. 1.—Pulse waveforms.

different frequencies makes the wave deviate from the pure
" sine-wave shape. Nevertheless, in analysing circuit per-
formance it is often sufficient to confine the discussion to
sine-waves. The sine-wave has been chosen as the basic
waveform for circuit analysis because it has the property of
passing through linear electrical networks without changing
its shape. We shall see below, when we consider other
waveforms, that in general their shape is changed by a linear
network.

In pulse circuits we are not interested so much in the
fundamental frequency of a wave and its harmonic content,
if any; our attention is concentrated mainly on the exact

1



2 ELEMENTS OF PULSE CIRCUITS

shape of the wave and its variation from point to point in
the circuit. The basic waveform is now the square-wave
(Fig. 1). In the ideal square-wave the voltage changes in an
infinitely short time from one steady level to another: that
is, the wave has a perfectly flat top and bottom and infinitely
steep sides. Fig. 1a shows a symmetrical square-wave, while
in Fig. 15 we see an asymmetrical form in which the positive
voltage regime is of shorter duration. This latter is often
regarded as a square (or rectangular) pulse of amplitude V
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F1G. 2.—Triangular or saw-tooth waveforms.

and duration 7, rising from a steady base-line. 1In this
example, the pulse recurs regularly after a time interval 7,
called the recurrence period. The quantity +/T is called the
mark-space ratio: thus a symmetrical square wave would
have a mark space ratio of 4. In many cases, however, the
pulses are not regular, but occur singly, or at irregular inter-
vals. It is often convenient, therefore, to discuss the response
of a circuit to a single square pulse, which may, of course, be
positive as in Fig. 15, or negative as in Fig. lc.

Another common pulse waveform is the triangular wave,
Fig. 2a, often called the saw-tooth, or time base, waveform.
If this wave is applied to the X-deflection plates of a cathode
ray tube, it causes the spot to sweep across the screen at a
uniform rate, and then to fly back infinitely quickly (in the
ideal case) to repeat the process. Thus, we may use the
cathode ray tube to plot the shape of another waveform
applied to the Y-deflection plates. - In such applications it is



BASIC CONCEPTS 3

important that the time base waveform be exactly linear:
methods of generating and handling linear saw-toothwaves
will be discussed in Chap. V. Fig. 2b shows another common
type of triangular wave.

Both the square and the triangular waves have a large
harmonic content. In the ideal case of infinitely sharp
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FiGg. 3.—Integration circuit,

corners, harmonics of infinite frequency must be present. In
practice there is some rounding of the corners, but it remains
true that our circuits must handle a wide range of frequency
if the waveform is to be transmitted at all faithfully. Attenua-
tion of the higher frequencies produces a rounding of the
corners; whereas attenuation of the lower frequencies results
in distortion of the base-line or nonlinearity of a saw-tooth.

Postponing the general discussion of these effects to Chap.
VI, we now consider the effect on the pulse shape of two
simple resistance-condenser combinations.

1.2. Integration. Suppose a positive square pulse of
amplitude V'is applied to the circuit of Fig. 3a. To determine
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the output waveform we may suppose that the pulse has been
produced from a battery of voltage ¥V, by the operation of the
switch S, as shown in Fig. 3b. Initially, with the switch in
position 1, the output voltage will be zero. When the switch
is moved to position 2, current i flows through resistance R,
through condenser C, and back to the battery. The result

|

|
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' Fic. 4.—Integration of a square pulse.

is that C is slowly charged and the output voltage, v, slowly
rises. The differential equation for the output voltage is:

dfu__ i __V—'v

&~ ¢~ "r - - - O

Hence, log (V — v) = — t/RC + const.
The condition, v = 0 when ¢ = 0, shows that the constant
of integration is log ¥, and we obtain finally
v = V(1 — ¢tIRC) * . . )

* Using the expansion series for the exponential this gives v ~ V#/RC at the
beginning of the wave where ¢ <€ RC.
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The output voltage therefore rises linearly at first, but then
more slowly, eventually reaching the steady value V, equal to
the input voltage. This is the well-known exponential
charging of a condenser, and is illustrated in Fig. 4b.

The time scale of this output waveform is entirely deter-
mined by RC, called the time constant of the circuit. The
product of resistance and capacity is a quantity of dimensions
time ; if the resistance is in ohms and the capacity in farads
the product gives the time in seconds. It is useful to remem-
ber that the output voltage rises initially at the rate
V/RC ; that is as if to reach the final voltage after time
RC. (See equation (1).) The percentage of the final vol-

tage reached, and remaining, after various times is given in
Table 1.

TABLE 1
.. Subsequent
Time in Voltage change volta
! ge change
Units RC per cent, per cent.
0 0 100
02 18-1 81-9
05 39-4 60-6
1 63:2 368
2 865 13-5
3 95-0 5-0
4 98-2 1-8
5 99-3 07
7 99-9 0-1

When switch S is returned to position 1 (corresponding
to the end of the input pulse), the condenser C dis-
charges through resistance R until the output voltage, v, is

again zero. If we solve the differential equation as before
we find |

v = VetIRC . . . . 3)

This waveform is shown in Fig. 4b. We see that it is similar
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in shape to the positive going waveform at the beginning of
the output pulse, and Table 1 applies in this case also.*

The net result is that the ideally square input pulse of Fig.
4a is transformed at the output to the shape of Fig. 4b. We
have so far supposed that the input pulse duration is much

i1 R{C=0

Ll R I

RC=0:05T

\

F1G. 5.—Integration of a square pulse by various time constants.

larger than the time constant RC. If these times are com-
parable, the discharge phase sets in before the final positive
voltage 1s reached. Fig. 5 shows the output waveforms for a
fixed input pulse and various values of the time constant RC.
We see that the distortion is negligible when RC is very short,
and increases progressively as RC is increased.

* This is an example of the general rule that for linear networks positive and
negative puise fronts produce effects which are the same, but inverted; and the
end of a positive pulse can be regarded as an isolated negative going pulse front.

The symmetry between positive and ive di however, when valves
and other non-linear elements are inclu in the it. .
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When the time constant is very long, the peak output
voltage is proportional to the area under the input pulse, that
is, to V. This follows from equation (1) which shows that

v V
“'t‘—w'}—{"éfor‘v<]7. . . . (4)

... v = V7/RC at the end of the pulse if r < RC.

Physically, the result follows because the condenser C is
charged at a rate proportional to ¥ and for a time . More
generally, for an input pulse of arbitrary shape, the peak
output voltage is proportional to the area under the pulse,
provided always that RC > pulse length.

Because of this property the circuit of Fig. 3a is called an
integrating circuit. The whole process, resulting in the
whole series of output waveforms in Fig. 5, is known for
convenience as integration. 1t is important to realize that
exact mathematical integration is approached only in the
extreme case of Fig. 5¢. In the more typical case of Fig. 5b
there is no connection with mathematical integration, but we
still use this term for convenience.

We now consider the effect of the integrating circuit on a
triangular wave. Suppose that the input to the circuit of
Fig. 3a has the form V = kt. The differential equation for
the output voltage v then becomes

dv kt—v
dt  RC ©)
or, in standard form
dv 1 k
a TR RC"
Multiplying both sides by e/RC,
d k
= HHRCY . 4pt/RC
dt(v . elikC) R Cte .

Therefore, -
(ve!!RC) = kj:) td(e!RC),
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which on integration by parts yields
v =kt — k.RC(l — etRC) | . (6)

This behaviour is illustrated in Fig. 6. Initially dv/dt is zero,
but after a transition period of order a few times RC, the

, - : P RC=T/6

Fi1G. 6.—Integration of a saw-tooth.

output voltage (Fig. 6b) rises at the same rate as the input
voltage (Fig. 6a), but lags by the constant amount k. RC ;
that is by the amount the input saw-tooth rises in time RC.
In effect, therefore, the output voltage lags in time by the
interval RC.

v = k(t — RC) . . . 5 (7
dv

Physically, this happens because a steady current C 7 is

d

e e At o

A o



BASIC CONCEPTS 9
needed to charge condenser C at the constant rate, and this

current is provided by the voltage drop RC %?t- across resistance
R

In Fig. 6a we show a typical input triangular waveform,
and Fig. 6b gives the corresponding output. At the end of
the sweep the input voltage returns to zero and the output
decays exponentially as in the
case of the square pulse. In the
case of a recurrent saw-tooth the
exponential decay at the end %-R
of one saw-tooth has to join
smoothly to the lagging rise of
the following §aw-tpoth withthe g . 9 Differentiation
result shown in Fig. 6¢c. Note circuit.
that duv/dt is zero at the output
when the input and output voltages are equal because then
there is no current through R. In all cases, the integrating
effect of the circuit produces departures from linearity at the
beginning of the time base for the duration of several time
constants.

U o 1 = out

1.3. Differentiation. We now consider the circuit of Fig.
7 which differs from Fig. 3a in that condenser and resistance
have been interchanged. Instead of observing the voltage
across the condenser, we are now interested in the voltage
across the resistance.

We can proceed as before by solving the differential
equation for the output voltage but it is simpler to observe
that (voltage across R) + (voltage across C) = input voltage.
The voltage across C is already known from our work on the
integrating circuit (see equations (2) and (3)) and we obtain
for a square wave input the result

v = Ve /RC at the front of the pulse}

v = — Ve URC at the tail (8)

The input and output waveforms are plotted in Figs. 8a and b.
) |
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Physically we can explain this behaviour by noting that the
voltage across a condenser cannot in general change in-
stantaneously. It can only change when the charge changes,
and this usually happens gradually as current flows through
the condenser. This means that rapid changes in voltage
are transmitted by a condenser without attenuation: as far
as rapid voltage changes are concerned, we can regard the
condenser as a direct connection. This is an important
principle which we shall

1 use again and again in
a v analysing pulse circuits.
A In the present case,

the steep front of the
input pulse is trans-

‘\ T mitted completely by
b A4
)

the condenser and ap-

- pears undiminished at
v the output. The output
__L voltage causes current

to flow through R: this

Fi1G. 8.—Differentiation of a square current must flow also

pulse. through C, so that the

condenser is charged

and the output voltage gradually returns to zero. On the

tail of the output pulse the action is similar. As before the

time scale is determined by the time constant RC, and Table 1
again applies.

The output pulse obtained with a fixed input pulse and
various values of the time constant RC is shown in Fig. 9.
Here the pulse is modified only slightly if RC> r; it is
the short time constants that give distortion. In the ex-
treme case RC < ~, the output approximates to the mathe-
matical differential coefficient of the input waveform. For
this reason the process is known as differentiation. Here
again, we must regard the word as a technical term applying
to the whole family of distortions; the pure mathematical
meaning should be kept well in the background.

Let us now consider the differentiation of a triangular
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wave, V = kt. We can obtain the output voltage by sub-
traction as before, using equation (6). This yields

v =k.RC(l — etRC) | . . (9
" ad R = oo
b 1 RC=S5T
C R(C=T

d K RC=025T

e k RC=005T

[
k_..t‘_-’

FiG. 9.—Differentiation of a square pulse by various time constants.

Figs. 10a and b show the input and output waveforms, The
output voltage rises initially at the same rate as the input
voltage, but after a time of order RC settles down to the
steady value k. RC. Physically, the charging of the con-

: dv .
denser at constant rate requires a current C T flowing through



