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Preface

Mathematics is too hard and too much, except higher is compared with ele-
mentary.
Differential equations and trigonometry measurement

Our target is the differential equations. What is the differential equation?
What is the most convictive example? It is the trigonometry measurement,
measuring the height (unknown) of a tree from a slope (what we know) of
an imaginary hypotenuse:

- height

//
<o

base
elementary trigonometry uses a tangent formula: height = slope x base
Without trigonometry (or tangent formula) we have to cut or climb the tree!

A breakthrough is to change the tree to a hill, measuring the height (un-
known) of a hill from variable slopes (what we know) of the curved hillside:

hillside
height

This is called a curved trigonometry to distinguish elementary trigonometry,
or read as a differential equation: given slopes and find the height solution.
Solver: height formula

It is still based on the tangent formula, but before using it we first shorten
the curve triangle into an infinitesimal straight triangle (called the differential
triangle):
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height

differential

differential lifferential

triangle

curved trigonometry uses tangent formula in every differential triangle
which has been appeared in Chinese newspaper(?9,

whose height can then be computed by the tangent formula, slopexbase,
called differential.

Now, the height solution is the sum of differentials:

total height = integral of differentials,
each differential =slope x base.

Such a differential, with a quantitative definition, has been stated in Lin[3%
and will be represented in section 1.1.2 of Chapter 1 in this book.

However, this differential equation is the simplest one among all the dif-
ferential equations. Let us observe its variations.

Variations

The simplest differential equation, together with its variations, is widely
used. It is not only used to find the areas enclosed by most amazing curves
in calculus textbooks but also used, e.g. to predict the recent population
in China: in year 2000 there was a census that mobilized the whole nation
directly from door to door, spent one year more and gave a number of 12.66
hundred million, while a population prediction can be done by a college
student indirectly solving a population differential equation (a variation of
the simplest differential equation) in a few minutes, giving a number of 13.15
hundred million (see Section 1.1.5 in Chapter 1). Two answers are about the
same but their efficiencies are a world of difference. This is why Newton said:
it is necessary to solve differential equations.

So, the differential equation is inevitable extension of the trigonometry
measurement, from measure the tree height (from one slope) to measure the
area and population (from variable slopes) and, more often, describe all laws
in nature. Where can we find such a “lucky mathematics”, simple but widely
used?

The fundamental formula solves not only the simplest differential equa-
tion, but also its variation—a class of differential equations, including the most
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important differential equation (such as the population equation above) in
applied mathematics (see Strang’s Calculus, p.242), or more generally: the
separable equation, the linear equation and generally the exact equation (as
in Braun’s Differential Equations), all of which can be put in the form of the
simplest one (a class = single one). Thus the simplest differential equation
is not simply an isolated equation but plays a fundamental role in a class of
differential equations. It is better to focus on the simplest (and fundamental)
one than spending on more differential equations.

Approximate solvers

The very sad fact is that we cannot solve all differential equations explicitly.!
In order that differential equations keep any practical value for us, we must
abandon the explicit solver but satisfy with the approximate solvers. They
are the Euler tangent line solver (agreeing with the fundamental formula)
and the finite element secant line solver (similar to the inscribed polygon
approximation of a circle), presented in Chapter 1.

Two aspects, exact and approximate, cannot be neglected.

However, for such approximate methods, we need to know their accuracy
as clear as possible (e.g. the sign and size of error). The task of Chapters
3-7 of our book wants to know about the finite clement method: accuracy
and improvement. For this, we need three axes from analysis, not only

1. integration by parts
a variation of the fundamental formula, and

2. Sobolev inequalities
but also

3. norm equivalence lemmas
(agreeing with Taylor’s polynomial) or their variation, expansion lemmas, in
Chapter 2. In fact, the first two axes also dominate the theory of partial
differential equations, and graduates should be familiar with them.

Other lemmas contained in Chapter 2 are the embodiment of expansion
lemmas. They are the cornerstone of Chapter 3-7 and, are the most laborious
part of the book.

Sequel: For more details of Chapters 3-7
A quip appears on the first page of conference proceedings edited by Krizek:
“you think A, you talk B, you write C.” Can we make C =~ B ~ A? 2
7 computation
We have mentioned above that the finite element solver contains an

1 This is noting strange since a general polynomial equation cannot be solved explic-
itly.
2 Strang said in his Calculus!®® (p.27): “what I write is very close to what I would

b1

say.
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example—the polygon approximation of a circle. By our methodology, in-
venting higher knowledge by following elementary, we should invent finite
element solver by following this example. The most familiar thing is the
polygon approximation, m,, of circular perimeter =, including

() inscribed polygon of n sides;

(8) circumnscribed polygon of n sides.
In principle, one can achieve better accuracy by increasing the number of
polygon sides. How about its efficiency? It is lower, e.g. to guarantee the
polygon method, inscribed or circumscribed, an accuracy of seven decimal
places we need n = 12288 sides. Can we enhance the efficiency? If we use
the two consecutive computations, m, and 7, and extrapolate them with a

1 .
3 distance outside the interval (7, 79, ):

then, the result, extrapolation

49, — T
Blm) = =5

has much better accuracy (efficiency) than the original polygon method, m,,
e.g. E(m,) has also the same accuracy of seven decimal places but only uses
n = 96 sides and 192 sides, i.e. a one and a two-hundred-side polygons can
together do the same work that a ten-thousand-side polygon can do. Why?
The polygon method, («) or (3), has respectively the explicit expression:

vis
nsin —, for («
- ()
T =
ntan for (B)
n

Taylor’s formula gives respectively the error expansion:

™ (1\? w8 1\!
g(ﬁ) +§<ﬁ) + -, for ()

23 F1\? 167° /1\*
% () *T(;) T fr (9)

Ty — T =
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inscribed method ()

(o) = )
e =)

with respectively the dominant term

a3 /1\?  2md /1)\?2
AM\n/’ 3 \n

which reveal both the error sign and size. Furthermore, the dominant term
can be cancelled by a linear combination, extrapolation:

™ /1\*
- - f
180 (n) + or (a)

5 4
~% (%) I for (8)

two order higher rate than the original polygon method, =,,.

So, extrapolation is a cheap dinner of high efficiency. The polygon method
is welcome because it can be extrapolated, without changing the original
algorithm, to a higher rate.

Comparing these expansions we conclude that

(i) inscribed method, («), is a lower approximation while circumscribed
method, (3), is an upper approximation;
but because of 480 and 30,

(ii) method () has better accuracy than (3);

E(m,) —m=

1\2
(iii) both of them have the same error order of (~> and accompany the
n

4
same extrapolation rate of (—) .
n
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So, the error expansion is an ideal tool to determine the error sign and size
of an approximation (from the dominant term) and the rate of extrapolation
(from the remainder).

Is the story of = true for differential equations, e.g. the “eigenvalue”
computation? Such “eigenvalues” have been seen in the minor and major
axes of an ellipse

ellipse equation: AminZ? + Amaxy? = 1

7N

ellipse equation: Amin®? 4+ Amaxy® = 1

(where we recognize higher knowledge again by reviewing elementary ). This
is our task: exploiting the m-computation to serve for the eigenvalue compu-
tation of the differential equation such that the latter, cigenvalues, can be
computed well, like computing .

Let us follow w-computation from word to word. The circular perime-
ter m can be approximated by the polygonal perimeters 7, from both sides
using inscribed and circumscribed methods, each of which has its own expan-
sion. Analogously, can the minor and major axes, or eigenvalues Ay (k,l =
1,2,---), be approximated by the “finite element” eigenvalues Ay (Where
h ~ n~!) also from both sides using “nonconforming” and “conforming”
methods (called (¢), (), etc.), each of which has its own expansion? The
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answer is positive, e.g. for the eigenvalue problem of a typical differential
equation and two finite element methods under certain geometrical condi-
tions, we have the expansions

2k2 2
- 1; h? + O(h"), for (¢)
Aklh — Akl = ) o
Q“—g%)—hZ +OMY.  for (n)

From the sign and size of the coefficient of A% in the dominant term, we
conclude that

(iv) method ({) is a lower approximation while method (7) is an upper
approximation;

(v) method () may have better accuracy than (¢);

(vi) both of them have the same error order of h? and accompany the
same extrapolation rate of h?.

Similar eigenvaluc cxpansions can be proved for more nonconforming and
conforming methods (under certain geometrical conditions) to judge the error
sign and size (from the dominant term) and the extrapolation rate (from the
remainder). Even the eigenvalue expansion did not be proved (say, under a
general geometrical condition) we can still use the extrapolated eigenvalue
E(\p), to compare with the original eigenvalue, A, or A, to see if the former
has a big difference from the latter. ’

In short, the expansion method (and extrapolation algorithm) possibly
work for the eigenvalue (denoted by \) approximated by finite elements (de-
noted by Ap):

Ap = X+ ch? 4+ o(h?).

To be insatiable, does the expansion method possibly work for the solution,
u(z), approximated by a finite element, up(z):

un(z) = u(x) + c(z)h? + o(h?)

in L? or at almost all points? Indeed, in the literature (1978-1985), such
a solution expansion was believed even “proved” to hold for a typical dif-
ferential equation, and, more seriously, more people in the finite element
community still expect it. However, we have an “impossible” result (see Lin-
Liu in Appendix 3): such a solution expansion holds at almost no points!!
Such a result avoids the misuse of the method of extrapolation, and presses

1 But at interpolation points.
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us to modify the expansion method, e.g. introduce postprocessing of finite
element solution, wuy(x), such that

up(z) = u(z) + e(z)h? + o(h?).

This is the job of second part of our book, Chapters 4-7, where the postpro-
cessing will be the additional work of the solution problem. Such a kind of
postprocessing has been used in Shaidurov’s books (1995) for the linear fi-
nite element, in Lin-Yan’s book (1996) for different conforming finite elements
including mixed finite elements, and in Lin-Tobiska-Zhou’s paper(2001) for
nonconforming lowest-order finite elements. In 1999-2001, Dr. Jiafu Lin
had a more systematic work in this aspect during his post-doctor research
in our group and so was invited to write this part. We must emphasize that
the second part is written in a completely independent way* such that the
readers interested in the solution computation of partial differential equa-
tions could read it immediately without reading Chapters 1-3. The second
part also connects with the superconvergence theory: when we are unable to
establish extrapolation for the solution problem we will try to establish super-
convergence, whose general framework has been summarized by Brandts and
Krizek (2001). Superconvergence in the generalized finite element method,
see Babuska-Banerjee-Osborn(2006).

To end the preface, may we quote a line again from Strang’s Calculus:
“I could go directly to the formulas but I am really unwilling just to write
down formulas and skip over all the ideas”. Or in words, mathematics is not
only calculations and proofs but needs understanding—our book emphasizes
to understand higher knowledge by comparing elementary.
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