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SERIES EDITOR’S PREFAQE

Approach your problems from the right end It isn’t that thqy can’t see the solution. It is
and begin with the answers, Then one day, that they can’t see the problem.

perhaps you will find the final question.
' G.K. Chesterton. The Scandal of Father

‘The Hermit Clad in Crane Feathers’ in R. Brown ‘The, point of a Pin’.
van Gulik’s The Chinese Maze Murders.

‘Growing specialization and diversification have brought a host of monographs and
textbooks on increasingly specialized topics. However, the "tree” of knowledge of
mathematics and related fields does not grow only by putting forth new branches. It
also happens, quite often in fact, that branches which were thought to be completely
disparate are suddenly seen to be related.

Further, the kind and level of sophistication of mathematics applied in various
sciences has changed drastically in recent years: measure theory is used (non-
trivially) in regional and theoretical economics; algebraic geometry interacts with
physics; the Minkowsky lemma, coding theory and the structure of water meet one
another in packing and covering -theory; quantum fields, crystal defects and
mathematical programming profit from homotopy theory; Lie- algebras are relevant
to filtering; and prediction and electrical engineering can use Stein spaces. And in
addition to this there are such new emerging subdisciplines as ”experimental
mathematics”, "CFD”, “completely integrable systems”, “chaos, synergetics and
large-scale order”, which are almost impossible to fit into the existing classification
schemes. They draw upon widely different sections of mathematics. This. pro-
gramme, Mathematics and Its Applications, is devoted to new emerging
(sub)disciplines and to such (new) interrelations as exempla gratia:

- a central concept which plays an important role in several different mathematical
and/or scientific specialized areas;

- new applications of the results and ideas from one area of scientific endeavour
into another;

- influences which the results, problems and concepts of one field of enquiry have
and have had on the development of another.

The Mathematics and Its Applications programme tries to make available a careful
" selection of books which fit the philosophy outlined above. With such books, which
_ are stimulating rather than definitive, intriguing rather than encyclopaedic, we hope

to contribute something towards better communication among the practitioners in
diversified fields. .
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In the series editor’s preface to the first volume of this two volume work I wrote
that the time-gap between theoretical developments and applications of these was
fast disappearing in many fields, including the part of mechanical engineering
involving continuum mechanics. (Though that is definitely not the only part of
mechanical engineering where this is the case; stochastics mechanics, for example, is
another (cf. the book by P. Krée and Chr. Soize, Mathematics of random
phenomena, in this series) and so is the part centering around questions related to
identification and filtering).

Variational problems and optimization questions in continuum mechanics tend
to involve a functional, a domain, exterior forces (or controls) and a PDE for the
function for which an optimum (extremum) is sought. The more classical problems
ask for the optimizing function. Other more modern questions ask for optimal exte-
rior forces in some sense, or optimal shape of the domain involved, or such ques-
tions as how much of the boundary must be available (for control through boun-
dary conditions) to be able, say, to control the vibrations of a satellite.

This book is mainly concerned with optimal shape.and optimal exterior forces
type problems.

All such problems tend to involve abstract differentiation in ali kinds of
infinite-dimensional (function) spaces and it is definitely not true that ‘straightfor-
ward” Fréchet or Gateaux differentiation will lead to the right kind of numerical
algorithms. A lot of modern mathematics is needed including substantial amounts
from that again flowsring area of research: the effective use of symmetry properties.
(For the matter, also such things as nonstandard analysis have their applications to
problems of optimal shape as the author has shown.)

Thus the mechanical engincer is faced with the problem that there are many
sophisticated mathematical tools ready to be applied and the mathematician is con-
fronted with the fact there are many important unsolved problems coming out of
continuum mechanics. I expect this book will be most useful for both.

The unreamnable effectiveness of mathemat- As long as algebra and geometry proceeded

ics in scies © ... along separate paths, their advance was slow
and their applications linited.

Eugene Wigner But when these sciences joined company

they drew from each other fresh vitality and

Well, if you know of a better "ole, go toit.  * thenceforward marched on at a rapid pace

towards perfection.

Bruce Bairnsfather
Joseph Louis Lagrange.

What is now proved was once only ima-

gined.

William Blake

Bussum, November 1987 Michiel Hazewinkel
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Introduction to Volume 2

VARIATION2AL PRINCIPLES OF CONTINUUM
MECHANICS, INTRODUCTION TO OPTIMAL
DESIGN THEORY

The study of variational problems usually
starts with the optimization of some functiona‘
J(f), where f belongs to a class of admissible
functions defined in a fixed region Q of a
Fuclidean space and obeys certain a-priori
specified constraints. The problem of minimizing
J(f(x)), x € 9, is equivalent to finding a solu-

ution f(x) to an equation L(f) = g where L is,
generally a differential operator and q is a
known function. More frequently problems modeled
by some differential equations are formulated in
a "variational form". Instead of "solving" a
differential system one can attempt to find a
function that assigns an extremal value to a
functional.

Problems of this type restated in the form:
minimize a functional J(f): H » R,where f is
allowed to vary in a class of admissible func-
tions H, belong to calculus of variations.

The restatement of laws of continuum mechanics
in a variational form,which was the principal
topic of Volume 1 of this work, has been the sub-
ject of intensive investigation for almost two
centuries, with some Sf most illustrious names
in mathematics and physics associated with it.
However, the classical formulation of problems in
‘the calculus of variations is only one of the
possible problems arising in the optimization of
functionals. Let us consider a specific example.
The Saint Venant's problem of pure torsion is
modeled by the equation

A®=f(x,y), x, ¥y € QC R?,0352/3x2+32/2y?,

where 9 is the two-dimensional compact region
1
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occupied by the shaft's cross-sectional area. $(x,y)
is the stress function, such that

3y _ ad  _ _
3% ‘yz ' Y Txz
(Tyz, sz are the shear stress components, in

the usual engineering notation),with all other
stress components assumed to be 1dent1cally equal

to ;ero. g vanishes on the boundary, i.e.
[r = %

In the usual formulation of the Saint Venant's
problem f(x,y) = constant, the constant is
chosen to be (-2) for convenience. The same
problem arises in the modeling of the static de-
flection of a membrane. If Q denotes the region
occupied by the membrane in the x,y - plane,
f(x,y)-the pressure, p(x,y)- the mass per unit
area; the potential energy assumes the form

(0.2) v = [ 5(x,y)-} grad ¢(x,y)|2dxdy-/ (£¢)dxdy,
Q

Q A}

where ¢ (x,y) denotes the deflection of the.membréne
in the z-direction (i. e. perpendlcular to the

X,y - plane).
The correspondlng Euler—Lagranqe system is

-grad (p-grad ¢) = £ ,
{‘pl = 0.

r
We see that a number of probfems can be formulated. .

a) The classical problem of the calculus of

variations: .
Find a function ¢ in the Sobolév space

Hl () that minimizes the functional (0.2)
for a given distribution of pressure f(x,y) and a

given shape of the simply connected domain 0
(therefore for a given boundary Tj.
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" b) Subject to some constraints, such as

éf(x,y) dxdy = 1, and £, <[f[< £,, find

f(x,y)in some admissible class F, such that
f(x,y) assigns an optimal value to the func-
tional V(9). Here Q and p(x,y) are given.

c¢) Given f(x,y), and the domain Q find |, ;
p(x,y) such that V(¢(p)) assumes an optimal
value.

(d} Given p(x,y), f(x,y) in some region C,
with measure(¢)> 1, find Q@ € C, with

| dxdy = 1, such that V(¢,R) assumes
c-Q

optimal valﬁe;

We have béen deliberately vague about the
optimality réquirements. "Optimal"” could mean

minimal, maximal, "close" to some specific value..

V(¢,0) does not have to be the energy, and its
optimum could mean that ¢ approximates in some
sense a given deflection, or that the deflection
at some specific points assumes preassigned
values, or a number of other "optimality"
criteria.

The problem (a) was designated as a
classical problem. It is the problem dlscussed
extensively in almost any Calculusrof Variations
text.

Problem (b) involves optimization of the
forcing (or control) term. What external forces
do we need to apply to the membrane to optlmize
the cost functional?

If we replace the static problem hy a
dynamic one (vibration of a membrane) we can
find an abundance of modern literature (i.e.
after 1945) dealing with this class of pro- ,
blems. It is one of the basic problems of #
modern control theory.

Problem (c) deals with design of tht thick-

v.___
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ness or mass distribution of the membrane. Some
authors refer to such problems as "control of
the coefficients.” Rapid progress in understanding
the problem (c¢) was made in the late 70-s and
the 80-s. The continuous dependence of energy on
coefficients regarded as vectors in a Hilbert
space turned out to be true in most cases and
false in some. Thus,a straightforward Fréchet or,
Gateaux differentiation sometimes could produce
a convergent numerical algorithm, and at other
times could lead to obviously incorrect designs.
Problem (d) is probably the least investigated and
beast amenable to purely heuristic manipulations.
Recently it became a "red hot" item of research,
with the "French school" taking the lead in
advancing the 1910 idea of Hadamard. It involved
variation of the Green's function for the problem,
due to agsmall perturbation of the domain in a
manner Bimilar to the vanishing of the first
variation in problem (a).

The problems of the type (c¢) and (d) are the
primary subject of this volume. All problems (a)-

(d) are usually attacked by techniques that can be
regarded as abstract differentiation . The value
of the functional is extreme if either the varia-
ble quantity lies on the boundary of the admissible
region in appropriately chosen space, or else if .

some abstract first derivative vanishes., These
two possibilities are exactly mirrored in some
maximal principles (Pontryagin's theory), bang-
bang principles in the former case or else in

the Gauss-Hertz prlnc1ple, or the zero sensitivity
postulate, or in Hadamards formulation for the
Green's function in the latter case. Thus,we are
able to unify several seemingly disconnected ideas
and to reexamine 'critically the corresponding
numerical schemes. Moreover, some common features
of all of the problems labelled (a) - (d) become
quite clear, and the difficulties also appear to
have some common origins and are generally related
to the lack of smoothness or to the poor ch01ce of

what is "admissible".



Chapter 1

Changes of Coordinates and Varlatlon of the
Coefficients

1.1 The state space.

Problems of engineering design involve a
"cost functional", constraints, and admissibility
considerations.

In principle, at least,we wish to de51qn
some mechanical or structural project as -cheaply
as possible, minimizing "a cost functional”. We
must obey some rules, that is constraints, some
laws of physics, which we have no power to alter,
and some manufacturing limitations. Also we
need to comply with some specifications. For
example the bridge must be able to withstand
reasonable traffic and wind loads, a machine
must be able to operate for a reasonable period
of time without excessive wear, a circuit must
be able to withstand an unexpected surge of
current. Thus,we have a number of constraints
imposed on the optimization problem.

Finally,we must decide the admissibility
of the mathematical model. But a first step in
any modeling must be the decision regarding the
choice of coordinates and the mathematical de-
scription of the "state of the system".

The underlying frame of reference is
commonly based on Euclidean space R® with
Cartesian coordinates x ={x,y,z} or x ={x;,x2,x;3}
with the undefined concept of p01nts in that
space. A mechanical system (or a continuum) is
said to have n- deqrees of freedom if its config-
uration ‘or state is completely defined by n- in-
dependent coordinates {qi}, i = 1,2,...n. W=
assume that "admissible" variables of system
{q!! form a local coordinate cover. At each
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point § in the configuration space there is a
neighborhood of § spanned by {qi}, which is
locally Euclidean. This means that there is a
mapping from the neighborhood Na of G into some

neighborhood of zero in the Euclidean space that
is an isomorphism (it is one to one with a
unique inverse). The configuration space with
n-degrees of freedom, or the state space is a
set S & R" with a local coordinate cover

{al}, i = 1,2,...n; (In fact $ is a manifold.)

‘'The Kinematic event space is a subset of R x §,

that is an ordered pair {t, q- (t)}, with t in-
terpreted astime and {q! (t)} as the state of the
system at time t. ’

We assume Newton's rather than Einstein's
or even more recent interpretation of the con-
cept of time. All events are well ordered with
respect to time axis, which is an isomorph of
the real line. Two separate events are always
universally ordered with respect to all observers.
Either event one preceeds event two, or they are
simultaneous, or else event two preceeds event
one. Time and state space are independent.
Motion of a particle -(that is of a single point)
'is described by & parameterized path :
x=x (t), t> t,r or a map t(e R)+ R". We
insist that this map is defined for either a dis-

crete system (with n-degrees of freedom) or for
a continuum.

1.2 A change of coordinates.

The study of motion of "points” in a conp-
tinuum, may consist in effect of taking a rlae on

point particles of the continuum in its motion.
Let g(to) be the position of some arbitrary

(3 I {d IS
point of the continuum at some (call it fhitial)
time t ., We regard the collection of par-

piglg paths as a system evolving from its
initial state at to. The position at time t is

given by the relation
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(1.1) X =X (§ , t) with X ( £, to) = £.

x is regarded as a function of £ and t, while

the time t is indentified with an infinite ray
of the real line.

The state space S is a subset of R ,or of a
Hilbert space H. Without any loss of generallty
we can assume to’= 0, that is identify the time

ray with R,.
We insist that the map t + S C:Rn or t *

S C H is defined.
For each instant t e R, we have only one

possible configuration {q} € S of the system. We

refer to this uniqueness property by calling the
system deterministic. Knowing g(0) we can
determine (at least 'in principle) the unique
state of the system at any future time t > to'

The motion of each "point" or "particle" x(t)e R’
follows that point according to an equatlon

(1.1) ?f = }f (glt)l ?f(gro) =
If each partible's path can be "retracted",
that is if we can uniquely solve for £, given the

relation x(f,t) = X {t) about the position % at

time t, we call this property the solenocidal
property, or the 1@penetrability. We assert that
two paths cannot cross each other, and only one
particle can occupy some point X in the Fuclidean
space at a given time.

We can regard x, t as space variables

§, t as material variables. It is unfortunate
that we perpetuate a confused notation in which
2 sometimes denotes a coordinate system and some-

times a function of time, when we identify x
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with the position of a particle in the coordinate
system designated by the same symbol, and some-
times an ordered n-tuple correspdnding to a
specific evaluation of the function t - X (t).

We discuss possible ways of clarifying this con-
fusing notation in an appendix. For the time-
being we shall perpetuate the mess created by our
predecessors, where the usual notation fails to
distinguish between a function and its range.

For a point-particle we specify the mass
density by introducing the Dirac delta measure.
(Read [1], [2], or [3]).

plx, t) = p,°8 (X (t) - x)

“* 2){ p(x(E),t) = o &(x(E) - x_(£)

o

Here{x, t} - are spatial independent variables

{E, ti - are "material" coordinates, or material
- ° independent variables.

pé is some constant associated with the mass of
the particle in-a suitably chosen system of
(physical) units. The "point in space" and
Yposition of a particle" are interchangable con-
cepts, corresponding to t'ie coordinate transfor-

mation (1.1):
X =X (g, t).

-~

The density of a mass at a point, or the
mass density function is given

p(x( E, &)=y (&, t)

that could be a "genuine" (that is locally in-
tegrable) functlon, or it could be a qenerallzed
function (for example Dirac delta, or its
derivative). Two concepts are of primary impor-
tance in continuum mechanics: the position and
all of its pertinent derivatives, and the mass
density and its derivatives.

We cam regard the position of a particle at
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X and its velocity V(x,t) as basic independent

quantities. The validity of spatial-material
coordinate transformation implies

(1.4) vix,t) = v(x(g, t), t) = V(E, t).
The chain rule implies that

(1.5) P, t) o2 ax' .
5t - i=1 ax?t ot ,xl = x1(z,t)

=] 2280 e, b
axl‘
On the other hand
du(E, t) _ v dp(x, t) i
(1.6) r—s—l———- = b . Vi(x,t)
Bt frmp, 0 AT -
3p(x, t) _ QQ_(XI t)
+ ~ = ~ , or
T8t Dt
(1.7) 2n(&, t) . Dp(x, t)
s x, 0 BT
= ap(i{'t) +(Y(¥,t) . v D(i(:t))r

ot *

where . denotes thé usual dot product in three
dimensions.

1.3 Conservation of mass, conservation of energ?.
If in a deformation process we observe the
evolution of some bounded region Q6 occupied by

the material, that is bounded at time t, = 0,s0

that tracing the motion of each point of we
associate bounded open regions Qt with each time

instant t., The mass conservation property is
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expressed by the equation

d _
(1.8) E{ [‘”' p(}f, t)~d)§ } =0.
T

"In fact any "conservation" property assumes an
identical form. If, for example, e(x, t) is some

form of energy density, then the energy conser-
vation law is given by

(1.9) St JIf e(x, £) ax }

1
o

. t .
The mapping t 2 Q. ¢t R =+ RY, Q(t) = Qt}
Q(0) = QO is assumed to be continuous with re-
spect to the norm [| « ||, where || - Qzll =

sup. li§ -y ll, xe¢ 2,y €9 . Itis easy to

. 2
check that it is a norm. Since || Qf[= sup ||x |,
xe@ 7

obviously ||c @|l=[c]| ||Q || for any c ¢ R ,

and || Q]| > 0 if and only if. @ # @ , and the
triangular Inequality is satisfied. Therefore,
continuity of the map t - Qt is defined: (Given

€ > 0 there exists § > 0 such that lth - 2, 1< e
1 2

whenever ]tl— tzl <8 )

We refer to a functional I(nt) as the in-
g dI()

variant of motion i
' dt

=0 For example ,the

total mass éontained in the region 2, is invar-
iant if

(1.100 & [flotx,)ax = & 1(a,) = 0

. at /) PR, BIEY = at ~% = O

t
for all t ¢ R+.
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Refering the deformation process to the material
coordinates we derive

_ dr @) _ dutE,t)
(1.11) t' = [== J¢( , (t))
— ch{ ot x/

, Where

+ug,e) R ) g4,
at -

J(§/§, (t)) is the time-dependent Jacobian
I(x/E () = l?xi‘é"_
) §EJ'

An intuitive meaning of the Jacobian J(g/E) is
as follows: J(x/E) is a function of tithe re-
presenting the ratio of volume of an infinitesi-
mal element that occupies the volume d§ compared

to the initial volume (at time t_ = 0) at position
£. The Euler's formula (sometim&s called Euler's
€xpansion formula) relates the rate af change of
the Jacobian J(x/g,(t)) to the divergence of the

velocity vector.
LR =[7, + v ]I (x/E),
avl(g) + sz(f) N avs(ﬁ)

X x_ 3%
1 2 3

where V_ - vi(x).

Two so called "fundamental theorems of calculus
of variations" were stated by du Bois-Raymond.
Let us restate them in a slightly more modern
terminology.

Theorem 1.1 If in a given domain , the func~
tional relation: <f,g>o = [[f[£(x).g(x)]dx = 0
. 2 - ~ -

1is true for any g(x) € Lz(ﬂ), (or only for any

b
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g(x) in a set of functions G that is complete in

), then £(x) = 0 almost everywhere in Q.

Note: a set G Lz(Q) is complete in Lz(Q) if
for any g € G, <h,g> = 0 implies that h ¢ G. That

is, any function orthogonal to g is in G.

Theorem 1.2, If [[[ f(x) dx =0, f ¢ L (0) for
4
any Lebesgue measurable subset Qi(: 8 C R,

then f(x) = 0 almost everywhere in Q. ' Theorems

1.1 and 1.2 can be simplified if we can assume
that f£(x) is a continuous function of X in Q.

Specifically, we can replace "almost everywhere in
Q" by "everywhere in Q".

A simple consequence of theorem 1.2 combined
with Euler's expansion formula is the fundamental
mass congervation equation of Bernoulli and Euler..

(1.12) Pe(®) | p(T, -+ V) =
e v

3p(x(t)) . _
Z + Vx (py) =0,
at .

That is a restatement of equations (1.10) and
(1.11). ’

One can also establish a transformaticn be-
tween the acceleration components expressed in
spatial and material coordinates

3 V(E,t) D v(ix,t)
R T T
2,2
v
=~ + (v « V) v . Let us suppose that the



