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Preface

This book was written in connection with a graduate-level course in theoreti-
cal physics at the University of Cologne. The required mathematical back-
ground is that which is usually required for courses in theoretical physics,
namely an elementary knowledge of function theory, differential equations,
and operators in Hilbert space.

The main topic covered in the lectures was a fairly detailed introduction
to inverse scattering theory as it is applied to one-dimensional systems ex-
hibiting solitons and the new mathematical ideas and methods developed in
this connection. These have been treated in a manner and language appropriate
for physicists. Thus, not all topics are treated with full mathematical rigor,
which might have resulted in smothering the important and interesting new
ideas in too many nonessential details.

The aim of the book is more to offer those who might want to investigate
applications of the systems treated here a self-contained introduction which
would spare them a tedious search of the original literature.

The material presented here is thus formal in nature - new mathematical
methods in physics. Practical applications exist in almost every area of
physics as well as in related areas, from plasma and solid state physics to
elementary particle theory, and from communications technology to meteorol -
ogy. A comprehensible presentation of all of these would go far beyond the
1imits of a normal-sized book and could not be presented in a coherent fash-
jon. In fact, only a selected part of the formal mathematical aspects of the
theory of one-dimensional solitons is presented. For example, the quantum
mechanical treatment of solitons is not touched on at all, although this is
a research area of great current interest. Originally, it was planned to in-
clude a chapter devoted to topological solitons in several spatial dimensions,
since these objects, which were once interesting only in quantum field theory,
are becoming increasingly important for the interpretation of phenomena in
solids. Unfortunately however, it turned out that this would have doubled
both the contents and preparation time of this book and the idea was regret-
fully abandoned.



This book is organized as follows.

The first chapter provides an introduction to the subject in terms of simple
examples and describes some possible applications. After this, the Korteweg-
deVries (KdV) equation, as the simplest examplie of an equation with soliton
solutions, is investigated in Chaps. 2 and 3. The inverse scattering trans-
formation and its application are treated in detail in Chap. 3. The techniques
developed there are generalized to other soliton systems in Chap. 4 and are
applied to a discrete system (of difference equations) - the Toda lattice -

in Chap. 7. Chapter 5 is devoted to the discussion of the sine-Gordon equation
and its solutions, since this is the most interesting special case (of those
developed in Chap. 4) for physicists. Finally, an introduction to the thermo-
dynamics of soliton systems will be given in Chap. 6, using the sine-Gordon
equation as example. The questions raised there have only been partially
answered and deal with currently interesting research problems.

The results and methods presented in this book come from many sources and
are sometimes not readily obtainable from the available literature. Some as-
pects are quite new. Since the author wanted to provide a self-contained in-
troduction rather than a review article, explicit citations in the text are,
for the most part, omitted. An annotated list of literature suitable for
further study is given in an appendix.

In conclusion, I hope that this presentation will not only impart new know-
ledge, but will also provide the reader with the same aesthetic enjoyment
which I, as author, had while "discovering" (from the literature) and summa-
rizing this fascinating system of theory and methods.

I am particularly grateful to Dr. E. Borie, Karisruhe, who translated the
original German text into English. The text has been greatly improved by her
criticism and her willingness at all times to find appropriate formulations.

I also thank numerous colleagues for helpful criticism and for drawing my at-
tention to typographical errors in the formulae and unclear statements in the
original version. Finally, I should 1ike to thank Miss Ch. Arnaud for her un-
failing patience in typing the numerous versions and corrections of the
original German text. I am extremely indebted to Ulrich Kursawe, who traced
out and eliminated the abundant typographical errors in the formulas of the
first edition and to Dr. Kok of Groningen and his students who kindly provided
a list of corrigenda.

Jiulich, May 1983 G. Eilenberger
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1. Introduction

1.1 Why Study Solitons ?

The last century of physics, which was initiated by Maxwell's completion of
the theory of electromagnetism, can, with some justification, be called the
era of linear physics. With few exceptions, the methods of theoretical phys-
ics have been dominated by linear equations (Maxwell, Schrédinger), linear
mathematical objects (vector spaces, in particular Hilbert spaces), and
linear methods (Fourier transforms, perturbation theory, linear response
theory).

Naturally the importance of nonlinearity, beginning with the Navier-Stokes
equations and continuing to gravitation theory and the interactions of par-
ticles in solids, nuclei, and quantized fields, was recognized. However, it
was hardly possible to treat the effects of nonlinearity, except as a per-
turbation to the basis solutions of the linearized theory.

During the last decade, it has become more widely recognized in many areas
of “field physics" that nonlinearity can result in qualitatively new phenom-
ena which cannot be constructed via perturbation theory starting from linear-
ized equations. By "field physics" we mean all those areas of theoretical
physics for which the description of physical phenomena leads one to consider
field equations, or partial differential equations of the form

9p OF b4y = F(¢, Oy eae) (1.1.1)

for one- or many-component "fields" ¢(t,x,y¥, ...) (or their quantum analogs).
These include classical areas, such as hydro- or magnetohydrodynamics, and
thus also some areas of meteorology, oceanography, and plasma physics, as
well as newer areas such as solid state physics, nonlinear optics, and el-
ementary particle physics.

1t has been known for a long time that nonlinearities can result in fun-
damentally new phenomena. Cne needs to think only of shock waves in aero-



dynamics, or of cyclones in meteorology. A more recent characteristic example
can be found in the Ginzburg-Landau theory of superconductivity. This is a
system of nonlinear coupled differential equations for the vector potential
and the wave function of the superfluid condensate. A simple global condition
on the solutions, namely the uniqueness of the phase of the wave function,
results in the existence of magnetic "flux tubes" with flux hc/(2e). In this
expression, it is to be noticed that the coupling constant g = e/c between
the vector potential and the current appears in the denominator; such a
result can never be obtained from perturbation theory, i.e., from a power
series in the coupling constant. Superconducting flux tubes are a prototype
for "topological" solitons, which are so called because their stability is
guaranteed by a topological constraint: invariance under a change of 2n in
the phase of the wave function arbitrarily far from the center of the flux
tube.

The equation for a scalar field ¢(x,t),

b=yt (@-00P-1) , l1<a<0 (1.1.2)

provides a very different but instructive example. It was considered as a
simple model for one aspect of the propagation of nerve pulses. Although the
differential part of this equation resembles the diffusion equation, it has
a solitary wave as a special solution, the "nerve pulse"

¢ = tanh(x - at) . . (1.1.3)

This solution of (1.1.2) can be interpreted in a mechanical model as the
friction-dominated (hence ¢t) motion of an elastic (hence ¢ ,) string which
slips out of a potential trough at ¢ = ~1, parallel to the x-axis over a
potential maximum at ¢ = a, into a deeper lying trough at ¢ = +1. It is also
clear that this solution cannot be obtained as a perturbation of the two
linearized equations which describe small vibrations about ¢ = + 1.

A characteristic property of such solitary waves is the constance in time
of their wave form and velocity; they represent wave packets (or in some
cases energy packets) which do not spread. The effect of dispersion is com-
pensated by the effect of nonlinearity. One can construct such solitary
waves (which can be regarded as solitons in a broader sense) as solutions of
many partial differential equations by means of the ansatz

¢(x,t) = o(kx - wt) (1.1.4)

where X = (xl, cees xn) and ¢ can have several components.



This aspect is one of the two foundations of the increasingly important
soliton concept in field physics, and we will consider it more thoroughly.
The other foundation is the topological aspect, which we cannot go into here.
If the field equations have particular solutions of the form (1.1.4), it is
attractive to regard these as elementary excitations, or "quasiparticles",
and to attempt to construct the complete solution to the initial value
problem (Cauchy problem) for (1.1.1) from such solutions, insofar as this is
possible. Thus one would have taken the nonlinearity into account from the
beginning. The practicability of this program depends, of course, on whether
one can take into account the interaction between the solitary waves, since
the superposition principle is not valid for nonlinear equations.

As one might expect, this is not always possible. However, ore of the sur-
prising discoveries of the last decade in mathematical physics is that there
exists a rather large number of specific nonlinear evolution equations (NLE),
mostly in one spatial dimension, which permit a complete analytical treat-
ment within the framework of the above program. Solutions to these equations
exhibit true solitons, in the sense the term is being used by mathematicians.
The physics community has not generally accepted this strict terminology but
rather talks about solitons whenever "lumps" of the field under considera-
tion move around (in the sense of a) below). These equations and their soli-
ton solutions are characterized by the following properties:

a) They have "particle-like" solutions (solitary waves)

fe w0 x(t)= x{0) s vt 1o
U/ | X AR V X
v i
t=0 t v
t<tcot t>teot
i
Fig. 1. Solitary wave motion Fig. 2. Interpenetration of solitons

with different velocity

b) These solitary waves can penetrate each other without destroying each
other in spite of their nonlinear interaction, as schematically illustrated
below, even when arbitrarily many such "solitons" are superposed.



¢) The initial value problem can be solved analytically as a development
in terms of solitons and continuous “radiation", in analogy with Fourier
analysis in the case of linear equations.

d) If the system of equations is formulated as a Lagrangian field theory,
it has infinitely many constants of the motion other than energy and momen-
tum. This is related to the complete solubility of the inita) value problem.

e) If the solutions ¢(x,t) of these equations are used as the potential
in a suitable linear eigenvalue equation,

Dy + Mlo(x,t)Iew = A(t)Y (1.1.5)
where D is a differential operator in x and the time t is regarded as a
fixed parameter, then A is independent of time. The analytical methods of
solution (Chaps. 3, 4, 6) are based on this fact.

For every operator of the form (1.1.5) it is possible to find a denumer-
able set of nonlinear evolution equations which exhibit solitons in the
sense of a)-e). The higher-order members of such a set are extremely com-
plicated; only a few simple systems in each series are physically interest-
ing. The best~known examples are:

the Korteweg-de Vries (KdV) equation by = 6¢¢x = dyxx
the sine-Gordon equation (SGE) bpp = Oyy - sin ¢
the nonlinear Schrodinger equation iot = -y t 16124

Equations with these properties are certainly mathematically singular in a
certain sense, and although no algorithm for determining whether a given non-
Tinear evolution equation belongs to this category or not exists at the pres-
ent time, it is reasonable to assume that the majority of field equations
which one encounters in the physics of condensed matter are not precisely of
this kind.

The justification for the great physical interest of these singular equa-
tions in spite of this is due to the fact that many nonlinear systems of
equations can be approximated by such soliton exhibiting NLE. These provide
a better starting point, or better zeroth approximation, than the linearized
equations in many cases, as we have previously indicated. The real system's
departures from these special equations, whether they be due to friction,
spatial variation of the coefficients, or other homogeneous or inhomogeneous
terms in the equations, must be handled subsequently in a perturbative treat-
ment of the soliton degrees of freedom. Celestial mechanics provides a use-
ful analogy. The astronomical Kepler orbits are solutions of Newton's equa-

1

tions of motion for a potential proportional to r %, which does not exist in



unperturbed form. The departures from these orbits are not taken into account
by calculating the planetary orbits from the beginning, including all their
mutual interactions, but rather by allowing for a slow time dependence of
the parameters of the unperturbed Kepler orbits. The use of linearized evo-
lution equations instead of those exhibiting solitons would correspond in
this analogy to using force free motion in a’straight Tine rather than the
Kepler orbits as a lowest order approximation.

The three previously mentioned NLE which exhibit solitons are particular-
1y important for physical applications (see [1.1 and 1.2]). If one is investi-
gating a physical system which, to a first approximation, is described by
the linear wave equation

by - D0 =0 (1.1.6)

(a is the Laplacian), then there are two limiting cases at the next level of
approximation which are particularly well suited to take into account the
effects of dispersion and the interaction of wave packets.

In the case of small amplitudes and relatively long wavelength, so that
dispersion (or more precisely, the departures from linear dispersion,

w = +k) and nonlinearity are only important relative to the leading terms
(1.1.6) over 1png time spans, we are dealing with the "hydrodynamic" 1imit.
Then, as will be shown in the next chapter, it is possible to derive the KdV
equation for the amplitude under quite general assumptions. This is true for
the original theory of shallow water waves (KORTEWEG and deVRIES, 1895: see
[1.3]) as well as for the description of ion plasma waves, waves in elastic
media, and many others.

In the short wavelength 1imit, one wishes to discuss a nearly monochro-
matic wave train, whose envelope is slowly varying (compared with the wave-
length and period) in space and time, and for which the nonlinearity is also
slowly varying, and thus couples only to the envelope. This situation occurs
frequently in nonlinear optics and can be described by the nonlinear
Schrodinger equation, again under very general conditions.

The sine-Gordon equation has almost become ubiquitous in the theory of
condensed matter, since it is the simplest wave equation in a periodic medium.
It is well known to many solid state physicists as the Josephson equation
for the propagation of flux quanta in sandwich type superconducting tunnel
junctions. It has also been used as a model for domain walls in ferromagnets
and ferroelectrics, for the propagation of charge density waves in one-dimen-
sional metals, and for the motion of dislocations in crystals, or for



adsorbate molecules on surfaces. The sine-Gordon equation is also familiar
in other areas, and it plays a role in the theory of wave propagation in
1ipid membranes, for the description of self-induced transparency in laser
physics, and as a model for elementary particles. This last application has
been especially interesting due to the proof that its quantized form (with ¢
regarded as a boson field) is equivalent to the Thirring-Luttinger model,
which is a model for interacting fermions in one spatial dimension [1.4].

The utility of being able to handle such equations should herewith be ev-
ident. A complete enumeration of all the known interesting equations or pos-
sible applications would be even longer. In addition, as the methods de-
scribed here become better known, the discovery and application of equations
which exhibit solitons will increasingly attract the attention of physicists
in all fields of research. We are entering the era of nonlinear physics.

1.2 Basic Concepts Illustrated by Simple Examples

Nonlinear evolution equations, the objects being investigated, are equations
of the form (1.1.1)

oy or ¢y =Fles 0, ..0) (1.2.1)

where ¢ is a one or several component, real or complex function of the time
t and spatial variables XpsXosens o For the most part, we will discuss only
functions of a single spatial variable x, corresponding to the present state
of the art. These are called evolution equations because one is interested
in the time development of the function ¢, for which at a given time to’ the
initial conditions

¢(to,x) and, if necessary, also ¢t(to,x) (1.2.2)

are prescribed. We also require that boundary conditions, generally

¢(tst=) =0 or ¢ (ty4=) <0 , (1.2.3)

be satisfied.

We will not be concerned with the question as to the conditions under
which this is a mathematically well-defined problem. For the physicist, it
is generally clear that a sufficiently smooth initial condition, which ap-
proaches the boundary value sufficiently rapidly with increasing |x| permits
a unique time development according to (1.2.1), at Teast over a short time
interval. Of course, it would be interesting to know under what circumstances



¢ develops singularities after a finite time, or when it remains smooth and
unique for all times. It is surprising that this remains a largely unsolved
problem of the mathematical theory of partial differential equations [1.5].
We remind the reader of some basic terminology with illustrations from
well-known equations.
The most important linear equaiion in physics is certainly the wave
equation

bet ~O0xx =0 - (1.2.4)

As is the case for every linear equation, the superposition principle is
valid, and it can be solved by the method of Fourier transforms. One obtains
the familiar dispersion law

w=+k (1.2.5)
and the
phase velocity v, = w/k = + 1
ph (1.2.6)
group velocity v_ = aw/dk = +1 . tE

gr -

The fact that the right-hand side of (1.2.6) is constant is described as the
absence of dispersion; wave packets do not spread, and the most general so-
lution of (1.2.4) can be simply given in terms of the initial conditions:

o (x,t)
$(x)

¢+(x +t) + ¢ (x-t)
(1.2.7)

3 [0,(x,0) # 6(x,0)]

This is a trivial example of the undistorted interpenetration of two wave
packets.
The diffusion equation

oy = Py (1.2.8)

is also frequently encountered, but has very different properties. Here we
obtain (by Fourier transformation) the dispersion Taw

©= - ik
and thus rapid spreading of wave packets. The solution is given by

. 2
d(xst) = [ Sk g (1= 0) /T (1.2.9)
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If one reverses the direction of time and considers °t = =$yy» ONE obtains
a simple example of an evolution equation whose solution can develop sin-
gularities within a finite time.

Like every other linear equation with constant coefficients, (1.2.8) has
infinitely many local constants of the motion. These are defined as follows.
If for two functions N and I with arguments ¢, ¢x’ ... and possibly

also explicitly x and t, the relation

d

G Mosbyotgs o) + Gg 1(0a,00y, 00) = 0 (1.2.10)
is valid, then it follows that .

%=gfinm=o . (1.2.11)

That is, @ is a constant of the motion with local density N and correspond-
ing local current I. Clearly, (1.2.8) is already in the form (1.2.10), and
thus

4 Jeix=0 , (1.2.12)

so that [ ¢dx is a constant of the motion, as is each Fourier component

2 © .
Kt S e gax = g (t=0) . (1.2.13)

-0

This is the reason for complete solubility according to (1.2.9).
Finally, we consider one instructive nonlinear example, the so-called
"Burgers' equation"

O = 200, + by s (1.2.18)

which is a sort of diffusion equation with a nonlinear term. It can be re-
written in the form of a local conservation law

bp - [68+ 41, =0 . (1.2.15)

Such nonlinear evolution equations in one spatial dimension permit Tinear
transformations with seven free parameters:

t- (t- to)/t s X (x - Xo)/E s ¢ (¢ - ¢o)/A

(1.2.15) - (1.2.15)/8B

so that it is possible to choose the constants which appear for convenience,

i



without Toss of generality. We will frequently make use of this fact without
mentioning it again. We remark that, in contrast to the case of linear equa-
tions, the constants A and B have different effects.

If one considers the two terms on the right-hand side of (1.2.14) indi-
vidually, one finds that

ot = Oxx

results in the familiar spreading of wave packets, while
by = 200,

has the formal solution (compare oy = v¢x)

o = F(x + 28t) , (1.2.16)

which can be represented graphically as shown below.

oixt)
! 10t

/ﬁ ¢(x,0)
-

Fig. 3. Evolution of wave packet according to (1.2.16)

-ANW N

x

One sees that the nonlinear term by itself results in "breakers" and thus,
for the proper initial conditions, leads to singularities in the solution
after a finite time.

Both terms together result in stable behavior. One can solve (1.2.14) by
means of the apparently artificial Hopf-Cole transformation (notice aiso
the Bicklund transformation of Sect. 4.7),

"

wx
by

.17

’ (1.2.17)
¢+ 0%

which is possible because the integrability condition [i.e., the equality of
the mixed derivatives from the first and second of (1.2.17)] is precisely
(1.2.14).

Using

X
p o= exp(f ¢dx) . 6 = U/ (1.2.18)



one eliminates ¢, and obtains from the second of (1.2.17)
Ve = by - (1.2.19)

The initial value problem for Burgers' equation is thus exactly soluble. Sol-
itary waves are obtained from the ansatz

P(x,t) = p(x - ct)
from which follows
w(x) = a{l + expl-c(x - x.)1}
and
45(x) = ~c/{1 + exple(x - x,)13 (1.2.20)

as is shown below.

Fig. 4. Solitary wave of Burgers' equation

The exact solubility of Burgers' equation permits one to study the inter-
action between solitary waves. This is why we have chosen this equation as
an example. From the solution of (1.2.19), we obtain two solitary waves:
v(x,t) = a{l + exp[-cl(x - X - clt)] + exp[-cz(x - Xp - czt)]}.

We show in Fig. 5 the result of the collision of two solitary waves propa-
gating in opposite directions and in Fig. 6, in the same direction. The main
result is that the faster solitary wave absorbs the slower one; we do not
have true solitons in the sense of Sect. 1.1.

Fig. 5. 0 < €1 <6
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