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Preface

Present-day physics courses are under increasing pressure, on
the one hand to keep up with developments in fundamental physics
and on the other to cover a broad range of topics appropriate to
the interests of students who may never become professiohal
physicists. Thus the time available for optics in the first or
second year of an undergraduate course, as for other branches of
physics, decréases, and this has influenced my choice of topics
in this book; 1 have been very selective and, as can be seen
from the contents list, I have chosen material which is either
basic to the development of the optics of the visible spectrum or
which has interésting links with other kinds of optics or other
branches of physics. Some may be concerned about what is not to
be found in this book, e.g: measuremeht of the speed of light,
group velocity, standing waves, the envelope functipn for difff—
action gratings, refractometry, Fresnel diftraction, and phaseF
change effects in interferometry. These omissions might have been
dictated anyway by the agreed size of the Oxford Physics Séries
texts, but I do not plead this as an excuse. The book a&s it stands
is intended as a reasonable’seleqtion of topics to be presented
to undergraduates, perhaps in their first term at University and
certainly having to cope with many other new things at the same
time.

I have tried to stress physical arguments, and in order
to reduce the mathematical complexity I have introduced the concept
of a complex amplitude in the first chapter. I have also used »
the formalism of Fourier-transform theory freely, since this
illuminates and simplifies every branch of physics in 'which waves
appear; this may seem rather extreme for an elementary text. but

since simple experiments with lasers are host.easily discussed in
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Preface
terms of Fourier transforms it seems almost certain that students
will meet the transform in their laboratory work and will grasp
the baéic ideag even if they have not been presented with a
systematic formulation. However, sections 5.5 and 6.6 contain
some more difficult Fourier-transform material, which could be
omitted in very early courses. The main definitions and theorems
of Fourier-transform theory needed are given, without probfs, in
the Appendix,

Some of tﬁe problems at the end of eacﬂ chapter amplify the
text by ihtroducing simple extensions of the main discussion.

I should like to thank my colleagues Dr. M.E. Barnett and
Dr. R.W. Smith for their help with this book, mostly given
unknowingly; many of their ideas about the teaching of optics
have gone into it. Also I am very grateful to Professor E.J.
Burge, who‘read the first draft, gave very vhluable criticism,
and made many useful suggesﬁ;ons, and to Miss Lesley Harwood, who
prepéred the index; and I thank the staff of Oxford Univeréity
Press for their help during publicafion.

The quotations from James Joyce's Ulysses are by kiﬁd permission
of the Sociefy of Authors, as the literary representative of the
Estate of James Joyce, and of The Bodley Head, as publishers.

Imperial College, W.T.W.
London, 1975
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1. Waves, rays, and particles

But what I am anxious to arrive at is it is onme thinE‘!

invent for instance those rays RUntgen did, or the telescope
like Edison, though I believe it was before his time, Galileo
was the man I mean The same applies to the laws, for example,
of a farreaghing atural phenomenon such as electricity...

) James Joyce, Ulysses
THE ELECTROMAGNETIC SPECTRUM »
For many ﬁurposes optics can be reg.rQed as the study of visible
‘light, although in fact this light forms but a small part of
a great range or spectrum of radiation. 'The most familiar part
ot this‘spec;rum (apart from visible light) is probably the radio
region (w1¥eless waves). The complete spectrum of electromagne-
tic (e.m.) waves is described in Chapter 1 of Radiation and ‘
quantum physics (OPS 3) by D.J.E. Ingram. The waves are
classified according to their wavelength X or their frequency v
and these are related by
‘ Av = velocity of the wave. ) ‘ (1.1)
Electromagnetic waves of all frequencies have the same velocity
in vacuum; approximately 3.108 m 3_1; this universal constant is
denoted by c. ' » )
We'shall begin by describing light and other parts of
- the e.m. spectrum as electromagnetic waves, but this is only one
possible description; light (as all other regions of the spectrum)
has many prpperties which are better discussed in terms of other
fepresentations (e.g. rays or particles), and we shall have t6
congider these also. ) '
-An e.m, ;ave-can be represented as in Fig.1.1. The graph
represents the strength of the electric field in the wave at a
givén instant and at different points along the direction z of

travel. Fig.1.2 shows the same thing in a more picturesque way;



2 Waves, rays, and particles
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FIG.1.1. The electric field strength in an e.m. wave at a given
instant as a function of the propagation distance z.
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the closeness of the lines indicates the relative strength of
the electric field. Thus Figs 1.1 and 1.2 can be regarded as
snapshots of the wave in space, taken at .a certain instant of
time., We could also look at a single point in space and consider
the variation in time of the electric field at that point; we
should then have.a graph like Fig.1.3.

A more complete picture would be obtained by making the
graph of Fig. 1.1 move along the z-axis at the velocity c of the
wave. The‘field strength at any point as time passes wouid then
vary as in Fig. 1.3, This travelling wave then has electric

]
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E=E, cos (2nvt)
—_—
Time,?

FIG. 1.3. The electric field strength in an e.m. wave at a given‘
point as aifunction of time t



Waves, rays, and particles
field strength E at any distance z aAd any time t given by
E = Eocos2ﬂ(vt - z/}). (1.2)
This is easily verified by keeping t‘or z constant and comparing
with the expressions in Figs 1.1 and 1.3 respectively.

To complete the picture of an e.m. wave we ought to consider
also the accompanying magnetic field. But here it is sufficient
to note that the magnetic field has a similar sinusoidal variation
and that in the simplest situations, where the wave is not trans-
fgrriné eénergy:-to the medium through which it is travelling and
where all parts of the wave are travelling in the same direction,
the magnetic field varies in step or in phase with the electric
field; both fields are at right-angles to the direction of travel
of the wave.

Different sections of the e.m. spectrum are produced and
detected in different ways, and the waves have a variety of
interactions with matter, (see Radiation and quantum physics
(OPS 3)). Although we shall be mainly concerned with visible
light, it is easiest to consider firgt the properties of radio
waves. This is because many of the properties we shali be -
interested in ~ those which produce interference and diffraction
effects - can be demonstrated and explained for radio waves with

fewer complications than for visibile light.

POWER AND ENERGY )

An essential property of all waves is that they transfer
energy (from a source to a deteétor) without transferring the
medium in which the waves occur. Indeed it is doubtful whether
there can be said to be a "medium" for e.m. waves. Thus the
rate of energy flow or the power in a wave is of interest. It
follows from the detailed study of e.m. waves that for a wave
like that in Figs 1.1 - 1.3 the power density (i.e. power per
unit.area across the wave transmitted in the direction of
propagation) is proportional to the square of the electric field

. strength. We shall take this result as our starting point for a
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*discussion of energy flow; it is treated in detail in texts on
electromagnetism (e.g. Electromagnetism (OPS 1) by F.N.H.
Robinson), where derivations and conditions of applicability can

be found. Thhs from (1.2) the power density is proportional to

E 1 + cosdm(vt - z/M)}. (1.3)

Clearly the cosine term causes a periodic fluctuation in
energy flow across a certain plane, say z = 0. The oscillating
electric field induces an alternating voltage in a conductor
(antenna), and this constitutes detection of the e.m. wave.

One of the major differences between e.m. waves at radio
and at optical (and higher) frequencies is that we have no
detectors which can respond fast enough to demonstrate optiqal
frequencies directly. In fact the fastest detectors of light -
will respond only to frequencies of the order of 109 - 1010 Hz,
some 5 ordérs of magnitude too low. Thus any detector of e.m. _
radiation in the optical rnngé responds only to the éverage power
over many cycles of the waves. This time-averaged power is thus

(from (1.3)) proportional simply to 802.

THE COMPLEX EXPONENTIAL NOTATION AND THE COMPLEX AMPLITUDE .
Another basic property of e.m. waves is that if two or more
wave systems cross in a certain region of space, the electric
and magnetic field strengths in this region are found simply by
addibg as vectors the filelds from the‘individual wave systems.
Thus we find the effect of overlapping waves by adding their
field strengths or by linear combination. This simple result
is8 not true for very large field strengths, and the topic of .
nonlinear optics has developed in the last decade now that such
field strengths are available at optical frequencies. However,
in this book we shall assume linear combination or superposition.
Both interference and diffraction phenomena can be explained
in terms of superposifion of waves, and in this section we shall

discuss the mathematical symbolism for this.
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FIG. 1.4. The superposition of two e.m. waves travelling in
directions at an angle © to each other.

N

Suppose we have two e.m. waves of the kind described on p.1,
travelling at an angle 8 to each other, as in Fig, 1.4. Let the
two waves have the same frequency (and therefore the same wave-
length) and the same maximum field strength Eo. If we use axes
as in the figure we can write the two waves as

E_cos2w (vt - z/)\),

0

Eocoszﬂ{e + Vt - (zcos® + ysinB)/A}.

In the expression for the second wave the comnstant €, known as

1.4)

a phase-shift term, allows for the possibility that the two
waves are not in step at the origin of the coordinate system,
and the expression zcosf + ysiné ensures that the lines of
constant electric field, or»wave!ronts, are at an angle 0 to the
y-axigs. To fix our ideas we can'rogard each of the parallel
lines in the figure as representing maximum field at a certain
instant of time, but this is not esacniial. In order to find
the interference fleld, as it is called, in the region where the
waves cross we have to add the two expressibns (1.4). If we are
dealing with optical frequencies we can only observe the time-
averaged power density, which is, of course, what we ordinarily
know as the light intensity, and so we have to square the sum

of the two expressions in (1.4) and find the time-average.

There is no fundamental difficulty in doing this, but the

manipulation of the trigonometrical expressions is very involved,
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particularly if we want to consider more than two waves and
it they all have different field strengths. This has led to
the introduction of the complex exponential notation and the use
of the complex amplitude to describe waves,.as follows.
First we replace an expressibn such as that in (1.2) by
" E = Eoexbzwi(vt - z/7),
where i is, of course, /-1. We shall add complex expressions of
this kind in superposing waves, but with the understanding that
we are actually concerned only with the real parts. _Since real
and imaginary always remain separate in linear operations, this
is valid. The above expression represents a wave with plane
wavefronts travelling in the z-direction. We can now represent
a similar plane wave, travelling in an arbitrary direction
specified by a unit length vector a, by the expression
E = Ejexp2mi(vt - a-r/1),
where r = (x,y,x) is the vector from the origin to an arbitrary
point in space. We can check that this agrees with the second
‘of (1.4) by expanding the scalar product and’ remembering that
the components of a unit vector are direction cosines.
Next we put 2wv‘= w, the angular frequency, and we put

2ra/A = k. k 1is called the wave—ﬁector, an@ we shall also use
the scalar |£| = 2n/A, which we denote by k and call the wave-
number. Thus our expression for a plane wave is

/ E(t,r) = Ejexpi(e + wt - k°r). . 1.5)
We have now indicated explicitly that the field strength E is
& function of the position r and the time t, and we put in an
arbitrary phase shift ¢. We get the effect of superposing n
waves of this kind by adding the appropriate terms,

gEnexpi(en + wt - En'ij’ )

or, taking out the common factor expiwt, since we have supposed

all the waves to have the same frequency,

expimtgznexpi(en - gh-;p.
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We can write themsu-uation, which is independent of the time,
as R + 1I, where R and I are two real functions of the
positién vector r. From p.4 the intensity in the wave-field
is the time-average of the square of the real part of
(R + iI) expiwt,

i.e, the time-average of

"(Rcoswt - Isinwt)z.
It i8 easily verified that this time-average is s!uply
i(R2 + Iz). The factor § is usually dropped.

In this calculation the tiné-dependence of the waves appeared
as a common factor expiwt to all terms, which vanished in the
final time-averaging; and the final intensity R2 + 1'2 is simply
the squared modulus of the summed complex expreasipns.

Thus we have the fule that, to find the intensity due to
several superposed plane waves of the same frequehc}, we add
terms of the type Enexpi(en - 5n-£) for the individugl waves
and take the squared modulus at the end to find the intensity.
An expression of the type

Eexpi(e - k°r),
in which the time-dependent part is omitted, is called a
complex émplitude. Thebe quantities can also be used for
superposing other than plane waves (i.e. convergent or
divergent waves), and for calculatipns with all forms of wave
motion, not only e.m. waves. It is only necessary that the
waves all have the same rrequeﬁcy. As a triv}hl example, the
complex amplitude of the wave in egqn (1.2) is

Eoexp(~2niz/k),
and the intensitY“is therefore immediatelyAE°2§ If we now
apply the procedure to .the two waves of eqn (1.4) we easily find,
for the intensity in the piané z = 0, the expression

2302 (1+ cos{(27/\)ysind}).

This is a typical two-beam interference epression; we shall

examine it more closely in Chapters 3 and 6.

T
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As we noted earlier, the intensity, which has dimensions
of power per unit area, is strictly proportional to Eoz, i.e.
in our present terms it is proportional to the squared modulus
of the complex amplitude. The proportionality constant is
important both for its dimensionaliiy and for its pumerical
magnitude in connection with radio wave a;d microwave theory;
but it is not important in the optical problems that we shall
encounter. Thus for many purpoges we can ignore the
electromagnetic nature of light and discuss its ﬁroperties in
terms of a complex amplitude of some undefined quality or medium.
Often we need not éven specify whether the wave motion is
transverse (e.m, waves or surface waves on water) or longi-
tudinal (sound waves in air). This apparéntly abftract approach
has advantages: parallels with other kinds of wave can be drawn,
and we shall find it easier to come to terms with tha fact that
even the electromagnetic theory is not adequate to explain all
optical phenomena.

It is foﬁnd that all kinds of waves have to be characterized
by two different quantities. These are of widely differing
physical natures, depending on the kind of wave, but in all
cases there is an amplitude, which varies in time and space and
gives interference effects, and an intensity, which represents
the rate of energy transport. With suitable interpretations
the complex amplitude and its squared modulus, the intensity,
can be used‘in all cases. All interference experiments and
many diffraction experiments can be completely explained in

these terms.

SOURCES AND DETECTORS

vTﬁe production and detection of different parts of the
e.m. spectrum are described in Radiation and quantum physics
(OPS 3). Many of the effects and techniques which we usually
call 'optical' apply mainly to the infrared, visible,
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and ultraviolet regions. In these regions there are three
main kinds of source:
(1) thermal sources which produce a continuous spectrum,
e.g. solid hot bodies, such as filament lémps, and
hot gases under high pressure, as in an electric
discharge through xenon (e.g. a flash tube);
(2) thermal sources giving line spectra, e.g. mercury
vapour or neon discharge tubes under low pressure;
(3) lasers.

We can describe the production and detection of radio waves
quite well in terms of the classical theory of electromagnetism,
i.e. without invoking the existence of electrons or using quantum
theory. However, in the optical region of the spectrum we have .
to introduce quantum concepts in order to explain light
production and detection, although effects concerned with
propagation alone (e.g. interference and diffractign) can be

) described in terms of a simple wave theory, usually involving
only the use of the complex amplitude.

The quantum theory of light emission and absorptiom is
explained in Radiation and quantum physics (OPS 3). Here we need
only note that electromagnetic radiation is emitted or absorbed
in finite quanta of energy called photons. The amount of energy
in a photon dépends on the frequency of the radiation and is
given by ‘

E = hv = he/x - (1.6)
where h, the Planck constant, is 6.626 x 10 °% J s. The energy
per photon is sometimes given in electronvolts (eV); 1 eV is
1.602 x 10"19 J. The emission or absorption of a photon
corresponds to a change in the energy of an atom, molecule,
or other gystem. In the infrared these transitions are between

" rotational or vibrational sta;es of molecules; in the visible
and near ultraviolet they correspond to changes in the enérgy

levels of electrons in the outer orbits of an atom; and in the

9



