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'PREFACE

>
e

The primary aim of writing this book is to indicate the enormous amount L ‘

of numerical work involved in solving large-size problems of interest to
practising engineers. It is imperative to get to know the most efficient
algorithm to solve these problems. Throughout the course of the book,
emphasis has been on the core and time needed to solve any given
problem by different methods. It is presumed that the reader has the basic

knowledse of . strength of matenals, thgory of machines and oomputer‘

programming.

The study has been restricted to the behxmour in the lmear range in order

to reduce the size of the book. Transient and steady-state vibration problems
as well as static problems have been considered. Use of finite difference and

finite element methods of formulation have been indicated. A number of

computer programmes (classroom-tested) have been given. Example problems
have been worked out and an adequate number of additional exercises have
been included. The last chapter is on ‘“‘case studies’ using. the subject

matter covered in the five chapters. The study of cyclic symmetnc objects -

has been given importance in Chapter 4.
The material reported in this book will be useful to practmng engmeers

in industries having digital computers and to college seniors and research

students in the field of machine design.
At the outset I would like to wholeheartedly thank the authorities of the
Indian Institute of Technology, Madras for the congenial atmosphere pro-

vided for writing this book. I gratefully acknowledge the enormous

amount of work put in by my students Mr. M. Ananda Rao, Mr.
P. Balasubramanyam, Mr. G. Natarajan, Mr. V. Om Prakash, Mr.
K. Ramesh, Mr. P. Srinivasan and Mr. P. Seshu in writing the computer
programmes and running sample problems. A major portion of Chapter 4
is the Ph D work of Mr: P. Balasubramanyam. The enthusiasm shown by
him in preparing this chapter is appreciated. The support given by the
Computer Centre at IIT Madras in preparing the computer listings is
acknowledged. The information shown in Tables 1.1 to 1.5 has been collec-

fyig ot

.
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ted from the Handbook on Finite Element Systems edited by C.A. Brebbia.
I am grateful to him.

Appreciation is also due to my wife and children without whose cooper-

ation and help it wou:d have been impossible for me to complete this
assignment.

V RAMAMURTI
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1. INTRODUCTION

The large size problems handled by modern digital computers connected

" with static and dynamic analysis of complicated machines or structm'cs are
generally of the form

(Ml + [Cli + [Klu = (F() )

where [M] is the global mass matrix, {C] the global damping‘mairix and B :\

{K] the global stiffness matrix. {F(t)} is a given forcing function vector in:

time, {u} is the resultant displacement vector, {u} and {ii} represent its velo- -

city and acceleration respectively. Generally, {M], [C] and [K] are banded.
Depending upon the nature of these coefficients, the problems are classified .
as static, dynamic, linear or non-linear. The followmg are some of the.‘ :
specific classifications:

(i) When [{C]1 =0,[M] = O[K] and {F(t)} are constants, the result is a
static linear problem. :
(ii) When [M] and [C] are absent, and [K] is a function of {u} and {F(0)}
a constant the result is a non-linear static problem. .
(iii) If {F()} and [C] are absent, and {M] and [K] are constants, one gets
an eigenvalue problem.
(iv) If [M], [C] and [K] are constants and {F(r)} is a periodic forcmg func-

tion, the result is a multi-degree of freedom steady state vibration - .

, problem ,
(v) If [M], [C] and [K] are constants and {F(t)} is a transient function of
time, the result is a transient vibration problem.

A considerable amount of effort has gone into the solution of such

problems. The use of the finite element or finite difference method for analys- - -

ing varicties of problems leads us ultimately to Eq. (1.1).

1.1 Finite Element Method

In this approach the unit under consideration has been treated as if it is
made up of basic elements like trusses, beams, plates, shells, pipe_:s. etc. and
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stiffness and mass matrices are computed depending on the nature of
behaviour. Excellent treatment of the subject can be found in Ref.[1.1, 1.4].
Besides programmes incorporating these features are available in standard
packages [1.5). Some of tne familiar ones are ADINA, ANSYS, APPLESAP, ASKA,
MARC, MSC NASTRAN and SAP 7. They are available at the following

addresses:
ADINA

ANSYS

APPLESAP

ASKA

MARC

» SC NASTRAN

SAP7

. Mr G. Larsen

ADINA Engincering A B
Stanj .rnsgatan 227
S 72473 Vasteras, Sweden

: Mr K P. Kohnke

Swanson Analysis System Inc. Houston
PA 15342, USA

: ITALIM PIANTI SPA

CAD Systems Department
P22 a Piccapietra 9
16121 Genova, [taly

: TIKO Software Service GmbH

Albstadtweg 10
D7000 Stuttgart, 80, West Germany

: Marc Analysis Research Corporation

Verrijn Stuartlaan 29
2288 Ekrijswijk, Netherlands

: The Mac Neal Schwendler Corporation

7442 North Fignersa Street
Los Angles, CA 90041, USA

: Stiuctural Mechanics

Computer Lab DRC 394
University of South California
LA, CA 90007, USA

Some of the specxal features of these programmes are as follows:

ADINA

ANS

APPIESAP

ASKA

MARC

MSC NASTRAN

SAP 7

: Non-linear analysis of reinforced and prestressed concrete

structures, thermoelastic, -plastic and creep analysis of heat
treatment processes, non-linear dynamic analysis of large fluid
structure systems and analysis of problems in fracture
mechanics. ’

. Capabilities include bilinear elements, heat transfer analysis,

fluid flow, electric flow, graphic package and extensive pre-
and post-processing.

Developed from two original programmes sap 4 and poT, its
special features include roof life load, foundation settlement
and wind actions.

- Applications in nuclear engineering, metal forming processes,

car body design and rocket structures.

: Viscoelastic behaviour, creep bchaviour, crack behaviour,

fluid structure interaction, and large displacement analysis.

Heat transfer, aeroelasticity, acoustics, electro magnetism,
random response, cyclic symmetry ang graphics.

. Extension of saP 4 and NONsAP, geometric and material non-

linearity, included linear viscoelasticity, random vibration,
layered sandwich material.
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The existing information on these six packages has been compited in
Tables 1.1 to 1.5.

TABLE 1.1
Element Type

Programme Truss 2D iD Axi Plate Shell Crack F uid
Beam Solid Solid Solid Bending Element Mech,
ADINA v v v v v 4/ v v
ANSYS v v v v v v v v
APPLE SAP kve Ev4 v v kv4 v
ASKA v v v v v v v v
MARC v v v v v v v
MSC NASTRAN Vv 4 v v - 4 iv4 Iv4
sap 7 v v v v v v v
TABLE 1.2

Material Properties

Programme Linear Elas- Non- Visco- Plastic Large Soil
tic Isotropic linear elastic Sirain  Mechanes
Anisotropic Elastic Materials .
ADINA v v v v v v
ANSYS Vv v 4/ v
APPLE SAP v '
ASKA v v v </ v
MARC v v v v v v
MSC NASTRAN Vv v v Vv v
sar7 4 v v /
TABLE 1.3

Analysts Capabilities

Programme Static Transient Harmenic Buckling Post Fracture
Analysis respanse Buck'ling Mech

ADINA v v v v v v
ANSYS v v v v v v
APPLE SAP v v v .
ASKA v v v v v v
MARC v v v v R x4
MSC NASTRAN v v v v v

sap 7 v v v v v
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TABLE 14
Other Capabilities

Programme Automatic Automatic Plot . Inter- Fre
Mash Node Routine active Format
Generation Numbering graphics input

ADINA

ANSYS

APPLE SAP
ASKA

MARC

MSC NASTRAN
SAP 7

AR
R L
AR
L 8 U
LR

. TABLE1S
. Operating Systems

Programme 1BM UNIVAC DEC ICL CRAY

ADINA

ANSYS

APPLE SAP
ASKA

MARC

MSC NASTRAN
SAP 7

<Xk -<< g
L L XX
A G RS
<X L <X

X

1.1.1 Finite Element Procedure

The structure is idealised by just subdividing the original object into an
" asserubly of discrete elements such that the resulting structure will simulate
the original one. The elements are connected to each other at points known
as nodes. After making a reasonable assumption on the behaviour of an
element, the kinetic energy T and strain energy U are calculated as a function
of nodal point displacements.
If the structure is composed of N elements, we can write

N
T=2T
im 1
N! R
U= 20U (12
The appli tion of Lagrange’s equation then results in the governing equation
of type (1.1) when damping is ignored.
1.1.2 Diacretisation

. Discretising the structure requires experience and complete understanding
of the behaviour of the structure. The structure can behave like a beam,
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truss, plate, shell, etc. Having chosen one of the models, one can compute
the following:
{f} = INI{8} (1.3)

{f} is the displacement vector at an arbitrary point inside the element, {8}
the nodal displacement vector and [N] the shape function. Likewise, com-
ponents of strain in an arbitrary point can also be written as

{e} = [BN{3} (1.4)

where [B] is the strain displacement vector.
The stress component {c} can be expressed as

{0} = [D){e} ) (1.5)

where [D] is the elasticity matrix.
The strain energy U for the element can be written as

1

The velocity vector of an arbitrary point can be written as

{f} = [NK&Y (1.7

where {8}’ is the time derivative of {3}.
Hence the kinetic energy T can be written as

- _;- f PINTBT(NYd vol : (1.8)

where P is the density of the material.
Equation (1.6) can be recast as

U = SBTIKIE) 1.9

(K] = jm (BIT [DI[B] d(vol) (1.10)

Here [K.] is known as the element stiffness matrix.
Similarly Eq. (1.8) can be recast as

T = SEIMIE}T (1.11)

where
(M) = j PINTTIN] d(vol) (1.12)

[M.] is known as the mass matrix.

As a typical example let us consider a beam as shown in Fig. 1.1. The
typical beam element is of length /, of uniform cross-section 4, moment.qf
inertia 7 and Young’s modulus E. Using the right hand coordinate system
and assuming two displacements (along the length and at right.angi to the ™

= — j Tod vol (1.6)
2 Jvat 3 L
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length), and rotation in the plane of the displacements at either end of the
beam, this beam has six degrees of freedom (three at each node).

ti2 \Z3 f22
LAt B b
| Uz 7ty
FIG. 1.1
Beam Element
The nodal displacement vector for this beam is
KR
o |
|
{8 = <| }» (1.13)
L 02
One can write the displacement field inside the element as
[ 1 (wm)
aa 0 0 a O O u
u b
{r} ={v } = < L 1.14)
0 a a« 0 as a | | ¥
v2
L J o)

The constants a; to as can be evaluated from the boundary condmons at
x=0andatx =/
Hence

ay = (I—_;:!r » az = x[l

" oas=1-02P) + P

I

. (1.15)
as = x — (2x*/D +'Ll:

= (3x%/I) — 2x%/P)
as = —(x¥l) + (x*/P)
For t}us problem, the longitudinal strain

) ,_
=% -y5 (1.16)

A

~ A" AN A
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Following the procedure underlined in Eq. (1.10) the stiffness matrix can
be expressed as [1.6]

AE 7]

[ 4E

i 0 0 - T 0 0
12E1 6ET 12EI 6ET
F e YT tE
4E1 6EI 2EI
A S

AE

7 0 0
. 12E7 6EI

Symmetric g -
4EI

L . Lol

The mass matrix can also be expressed in a similar fashion using Eq. (1.12).
This can be written as [1.6]

490 o0 o0 170 0 0 7
0 156 2 0 s4 131
2 _
L = %é 0 2u 4r 0 13 32
0 0 140 0 0
54 131 0 156 —2u
L 0 —13 —32 0 -2 4P
(118

When a series of elements are involved the overall stiffness and mass matrices
can be obtained by combining the matrices of the elements. The logic of
this assembly is explained later in Example 2.11.

1.2 Finite Difference Method

There are occasions when the behaviour of the object under load can be
mathematically formulated. If this leads to a governing differential equation
whose closed form solution is not easily available, approximate methods of
solution must be employed. Initial value (for transient vibration) and bound-
ary value (for static problems) problems involving either ordinary or partial
differential equations may be solved by such methods. The derivatives of
functions appearing in the differential equation are approximated by Taylor
expansion of the unknown function.
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Taylor series expansion of f; is given by
) 2 3
f=fur=foth = :i:hﬁ’+l;— ','il’;—f'."+ TR )

where ( ) stands for df/dx and & is the spacing.
From Eq. (1.19) it is seen that

¢ N
' fi= ————————-ﬁ*‘ = fit (1.20)
with an error of the order of -—f o
- Similarly,
y fir = a5 fier = i + fid) (121

. kv
with an error of the order T‘Z-f i.

When this is extended to partial differential equations in two variables x
and y, the same argument can be extended. If A is the constant spacing in x
as well as in y directions, and if (i, j) denotes any location, one can write

N = L(firg — 2is + fird) (1.22)
Ox2)at 1y Jz it 153 -1y} .

. ) B2 34
with an error of the order of PR

Similarly,

B o4
with an error of the order of — 13 5 y‘

All other combinations of interest have been discussed in Ref. [1 )

1.2.1 Beam Probiem

The governing differential equation can be written in the following form

4
EI—d—X—i = —Mx

ax: (1.24)
where EI = Flexural rigidity of the beam

W = Lateral deflection

X = Axial location

P = Intensity of loading
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) Non-dimensionalising of the variables can be done as follows:

X = af where a is a reference length

W = aw
_EI
Mx = p (me)
¢, w and m¢ are now dimensionless
d_d @£ _ 1 a
dX = ad¢’ dx? ~ a* d§
Equations (1.24) get recast in the following form
W'+ mg =
"o Pa‘ (125)
me = Er :

where ( ) = d/d¢
If w and m¢ are treated as dependent variables and £ as the independent
variable,

o Wirt — 2Wi -+ Wiy
= W

‘and

my = (me)ie1 — 2(1}::2:): + (mg)i_y (1.26)

where 4 is the spacing.
If L is the total length of the beam and if there are totally n intervals, A
can be expressed as

PR Y (127
an

a can be so chosen as to make # much smaller than 1. This will lead to an
error of order A2,

The governing differential equation at the number of locations on the beam
together with the boundary conditions will result in a set of simultaneous
equations when the differential equations are recast as difference cquat:ons
1.2.2 Shell Problem

For a general shell as shown in Fig. 1.2 the governing differential equation
of equilibrium can be written as [1.8}

aw” + aw + aw + aw” + asv’ + aw’
+ aw + agmi + asmg = —pt
aiou’” + au’ + e’ + aww' + awv'
+ aisw’” + aiew”’ + @' + aieme = —ps
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z:wr pr

FIG. 1.2
Element of a Shell

au’ + axu + anv”" + anv” + anv'
+ auw’" + axsw’" + axw

+ anm{’ + axwm} + awm; = —p,
aou’ + asu + anv + anw” + asaw’ + assw” + axmg =0 (1.28)

Here u, v, w are the three non-dimensional displacements and m; is the non-
dimensional bending moment.

()'=;%,()=§,-}  aw

where ¢ and 7 are non-dimensional x and y coordinates a1 to a are coeffi-
cients. These equations can also be recast as difference equations using
equations of the type (1.20) and (1.21). These together with the boundary
conditions will again lead to a set of simultaneous equations. When the two
curvatures of the shell are zero and when u and v are absent, they will lead
to equations of plates. In these simplified equations, if differentiation with
respect to y (or 7) are also ignored, they will reduce to the beam equa-
tions (1.25) discussed earlier (only coefficients az7, a33 and ass will remain).
To. summarise Egs. (1.11) are the most general government differential
equations for beams, plates and shells.

Shells of revolution assume special importance 1n the field of mechanical
engineering since units like pressure vessels, boilers, tabe mills kiln shells
and many process equipment are shells of revolution. In all these cases, the
displacements and stress resultants can be expressed as trignometric functions
in the circumferential direction thereby eliminating the differentiation in y
(or 7) direction. The governing partial differential equations reduce to

~ordinary differential equations in x(or £) only. These have been derived in
Ref. [1.8] and used in [1.9]. They are of the following form:

aw'’ + aw' + awu + a’ + asv + agw' + aw + asmi + aomg = —pg



