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Preface

A Hy W
Until recently, finite element techniques werealmosi.cxclusively used
in structural engineering problems sbut now there is a growing
awareness of their potential in other enginecting fields, especially in
fluid méchanics. ’ o R
This book presents these recent advances in a simple way. The

authors have been mainly concerned with “producing a ‘text for-

teaching which can be easily followed by the self-taught student.

The last part will undoubtedly also be of us¢ to research workers. "~

The reader will be led from the basic principles of Chapter 1, and

the simple finite element concepts and gnodels given in Chapters 2

and 3, step by step to more complex applications. A chapter (4) on
the governing equations of fluid flow has been included to provide a
more complete progression, though this is not intended for those
already well versed in fluid dynamics. Chapter 5 is concerned with
the solution of potential type problems and Chapter 6 sets out
viscous flow problems in porous media; both are topics well suited
to finite element solutions and of general interest to the engineer,
applied mathematician and physicist.

In the remaining chapters the solutions of more specialised .

problems are presented. Chapter 7 describes how circulation prob-
lems can be tackled using finite elements, Chapter 8 deals with the
solution of the mass transfer equation and Chapter 9 discusses
ways of solving general transient incompressible flows.

Since this book contains more material than could be used in a
standard cousse, the authors have also indicated in the contents some
sections which could be omitted without affecting the general
structure. Those students not interested in coastal engineering and
transport ty peproblems could in addition leave out Chapters 7 and 9.

Finally, the authors wish to thank all those who made this book
possible, especially their research associates Dr. R. Adey, Mr. L.
Rodenhuis, Dr. S. Smith and Dr. J. Wang.

. ' The Auihors
7 Southampton 1976

Ao |
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1 Weighted
Residual and

Variational
Methods

1.1 BASIC DEFINITIONS
We start by introducing some basic definitions and properties for
a sequence of functions such as

¢1(x), @5(x). @3(x) ... P (x) (L.n

The functions are assumed to satisfy certain given conditions. called
admissibility conditions, relating to the boundary conditions and
the degree of continuity. We will study them in more detail in the

following.
If the functions can be linearly combined. for instance,

¢ =ap, + o, (1.2)

where o and f§ are numbers, they are called elenients of a linear
space R, and the following properties hoid:

b1+ b=+ ¢
@ + P = 26 + P 1.3)
o, + ¢2) = 2¢; + ag,
The inner product of two functions ¢, and ¢, is denoted by
(1. 82> S ‘ (1.4)
1



2 WEIGHTED RESIDUAL AND VARIATIONAL METHODS

and it represents an operation on ¢, and ¢,, such as

(hir > = f $,()h(x) dx (1.52)

or
(brrbade = j (1 — Da(e) dr (1.5b)
0

The second definition is called the convolution. We will consider
only the first type of product here.

For real functions, the inner product has the following pro-
perties:

<¢1,¢2> = <¢2s¢1>>
Py, by) = {adpy, 92>

(D1, 92 + ¢3) = (b1, 02> + ¢y, b3) (1.6)
{$1,0:) >0 if¢, #£0
=0 if¢p, =0

where ¢, = Qis a ‘null’ function which exists in the space R.
A measure (norm) of the function ¢ can be taken as the square root
of the inner product of ¢ by itself and is denoted by [

ol = V<o, > (1.7)

A sequence of functions such as (1.1) is said to be linearly in-
dependent if

al¢l + a2¢2 + ...+ a,,¢,, = 0 (1_8)

only when all «; are zero.

A sequence of linearly independent functions is said to be complete
if a number N and a set of constants «; can be found such that, given
an admissible but otherwise arbitrary function u, we have

N
- Lt “ <e (L9)

where ¢ is any small quantity.
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The functions ¢; are called basis functions and the coefficients g,
are the Fourier coefficients.
If the normalised basis functions are mutually orthogonal,

(pinb> =0 ili#]
($i. 9> =1
Each additional term we take in the linearly independent and

complete sequence ¢; will introduce a further ;. For the Nth
approximation, we have -

(1.10)

N
u) = Z“i‘l’i
1
Thus
lu™) > jlull as N - (L1

The gorm of 4™ for a mutually orthogonal complete sequence (if
the sequence is not orthogonal we will accept that we can always
reduce it to an orthogonal one) is

™) = \/ {< i “f""'.’ ,.i, “’¢’> }

. =\/{ D) aﬂ,-(d’.-,d’,-)} (1.12)

i=1j=1

and since {¢;, ¢;> = 0if i # j, we have
N
flu™) =\/{ ; a?(d’.-,tb.-)} (1.13)

Fach term in the summation is positive, thus [[u™| approaches | u|
from below as N increases. ‘

Ju®™) < u™f < fjull with N <M (1.14)

An operator £( ) is defined as a process which, when applied to a
given function u, produces another, function p: 4

L) =p 1)
An operator is linear if
Llow, -+ Puy) = aLu,) + pL(u,) (1.16)
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This definition is general but we will consider here only differential
operators.
Properties analogous. to symmetry and positive definiteness for
a matrix can also be defined. for an operator. C0n51der a square
matrix, @ = [q;;]. We say a is.symmetrical when a’ = a, where a”
(the transpose of a) is formed by interchanging the rows and columns
of a. Symmetry requires «;; = a;;. Another way of defining symmetry
15 to require .
<y, ax) = (x. ay) o ()
for arbltrary vectors X dnd y. Expanding (a) and noting that
(bc)” = ¢Tb7, -
¢y, ax> = yTax (b)
(x,ay) =x"ay = yTa'x - (©)

shows that (a) is equivalent to a’ = a. The latter definition is more
convenient for extension to operators. Positive definiteriess is
defined by

x, ;x> =20 (d)

for all x and equals 0 only when x is a null vector. This property is

extremely valuable in establishing solution schemes and also in
constructing variational statements.

With this as background, let us consider the problem represented
by a set of homogeneous equations i the interior of a domain, V

Lu)y=0, xeV (1.17)

We form the inner product of #(u) with another function, say v.
The matrix transpose operations in (b), (c) are equivalent here to
integration by parts of (&(u), v> until the derivatives of u are
eliminated. This leads 1o the ‘transposed’ form of the inner product
and also to boundary terms. We write the results as

(L), r> = (u, LHe)y + f (F(r)G(u) — F(w)G*(v))dS (1.18)
s

where S is the exterior surface and F, G are differential operators
whose forms follow naturally from the integration by parts. By
definition, F(v) contains the ¢ terms resulting from the first phase of
the partial integration and G(u) contains the correspondmg u terms.
Samne examples which illustrate this operation are included below.

The operator £* is called the adjoint of ¥ If ¥* =%, ¥ is
said to be self adjoint. In this case, G* = G also. Self-adjointness
of an operator is analogous to symmetry of a matrix. In addition to
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determining whether the operator is self-adjoint, the partial integra-
tion also generates two different categories of boundary conditions.
The set F(u) prescribed are called the essential boundary conditions
and G(u) prescribed are the nonessential or natural boundary
conditions. One can specify either type of boundary condition on
the surface of a domain. However, the essential boundary conditions
must be enforced at some point in order for the solution to be unique.
Letting S, and S, represent complementary portions of the total
surface, S, we can state the boundary conditions for the self-adjoint
problem (¥* = ¥)as:

F(u) prescribed on S,
G(u) prescribed on S, (1.19)
$S;+8,=S

The positive definite property of a self-adjoint operator is defined
by the requirement that

(L), ud > 0 (1.20)

for all nontrivial u which satisfy the homogeneous form of the
boundary conditions. One determines whether ¢ is positive definite
by integrating the inner product until it contains only products of

derivatives of the same order. This operation is the mid-point in
the transformation of & into &* (i.e. equation (1.18)).

Example' 1.1
(i) Coasider

d2
Z(u)=d—x'; 0<x<l1 , (a)

Forming the inner product and integrating yields

1 1 dzu
f vy dx = J‘o va)-c—zdx

0

dult U dy du
= {p—] - —— b)
Paxly T )y dxdx ™ ®
du de! 1 dzvdx
=|v— — u— u—sd
0 s dx?

dx “dx
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Using the notation of (1.18), we have

F)=v
G(u) = du/dx G*(v) = dv/dx (c)
Fr=9

and the operator is self-adjoint. The essential boundary condition
is u prescribed and the natural boundary condition is du/dx
prescribed.

Referring back to (b), if we take v = u and homogeneous boundary
‘conditions, the first partial integration yields

1 1 du 2
J uluwdx = — J“j‘(—) dx (d)
0 o \dx
Then £(u) = d?u/dx? is negative definite.
(i) We examine next a more general operator,

+ a;(x)u O0<xxl1

d? d%u d du
L(u) = cw(‘h(x) a?) + d_x(GZ(x)a;
(@
The first partial integration operation results in
1 1 2 2
f v.f(u)dx-—-J' { dudw duﬂ+a3uv}dx

0 o |Md?dx? T “dx dx

Tof S a, 84 4 0,91 L a0 Sl )
Nax\® axz] T 2ax| T ax T " ax|,
If we continue, we would find that ¥* = . The boundary terms

follow from (b) and are summarised below.
Essential boundary conditions

1
+

F@y=u
Fu) = g_zi prescribed (¢
x

Natural boundary conditions

d d2u du

Gx(“) = a;(al d—x—z) + a, d—_; _

prescribed (d)
d*u

Gy(w) = —a, axz
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Considering (b), we can write
1 dZ
u
<u$(u)> = J~ {01(‘—

2 [du

z| T sl

0 dx dx

for u satisfying homogeneous boundary conditions. If a,. a; are > 0

and ay < 0 in the interval 0 < x < 1, the operator is obviously
positive definite.

2
C+ a3u2} dx (e)

(1)) Operating on

d*v  du
Py =S4 %
W= g Y (@)
yields
Jl d?u ‘@-Jr d _J" d’v  dv d
de2+dx uvx—odx2—5c+bux
du ath
+ U(a—;+ ul —u a—;) . (b)

The operator is not self-adjoint due to the presence of the first
derivative term. Odd-order derivatives will lead to skew-symmetric
terms in #* and G*. The essential boundary condition is u prescribed.
In this case, we take the nonessential (natural) boundary condition
as du/dx prescribed.

1.2 WEIGHTED RESIDUAL METHODS

Weighted residual methods are numerical procedures for approxi-
mating the solution of a set of différential (or integral) equations of
the form '

Llug)=p xeV (1.21)
with boundary conditions
Fluy) =g xe$ (1.22)

where x represents the spatial coordinates x,, x, and x5; S is the
external surface of the continuum; and u, is the exact solution, The
function u, is approximated by a set of functions ¢,(x),

’ N

u= 3 tf 7 (1.23)

k=1 .
where o, are undetermined parameters and ¢, are linearly inde-
pendent functions taken from a complete sequence.
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We will initiaily require that these functions satisfy all the
boundary conditions of the problem [equation (1.22)]) and have the
necessary degree of continuity as to make the left-hand side of (1.21)
different from zero. A procedure for relaxing the boundary condition
requirements 1s discussed in the next section.

Substitution of (1.23) into (1.21) produces an error function ¢,
which is called the residual:

=YLy -p#0 (1.24)

Note that ¢ 1s equal to zero for the exact solution. This error is
forced to be zero. in an average sense, by setting weighted integrals
of the residual equal to zero:

Ceowy = 0. i=12...N (1.25)

where w, ix a set of weighting functions. In what follows, we first
review a few of the weighted residual methods and then discuss the
Galerkin method in greater detail.

(a) THE COLLOCATION METHOD

In this method. we satisfy the differential equations only at a set
of chosen points. For a given approximating function
N

v = Z Ay (1.26)
we have k:\-l
t= LW =p=3Y 5LP)—p (1.27)

k=1
The parameters are determined by enforcing the condition ¢ =0
at N points in the domain.

We can-express these conditions in the same form as (1.25) by
introducing a Dirac function A(x,) such that 4(x;) = 0 for x outside
the interval x; + ¢ and

© Ax)dx = j d;dx =1 (1.28)

where ¢ is a small value (for point collocation ¢ — O) Then colloca-
tion is equivalent to

(64> = (LW - p.A>=0, i=12..N (129

Example 1.2

Consider the following second-order equation, which applies in the
domain0 < x < I: :
2

Y(u) d —+u+x=90 -(a)
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with boundary conditions

u=20 a‘tx=0

u=0 atx=1 )
We propose as an approximating function
u=x(l —x)e; +ox+...) (c)
which satisfies the boundary conditions for arbitrary «;.
If only two terms in the approximation are taken,
u=x(1 — x)(o; + x%x) (d)

the error is
= LW -p=x+(=2+x—x¥a, + 2~ 6x+ x>~ x>, (¢

We choose x =, x =

1
%2 _3—2 a, %
5 -t 0

as collocation points. This choice requires

g

Solving (f) yields
‘ ay = 3%’ oy = ‘291&7
(x (8
= 4
u 7 (42 + 40x)

Comparing this result with the exact solution, the fol]owmg table
can be drawn:

x uapp uenc(
025 - 0045 0-044014
050 0071 0-069747
075 0062 0-060056
sin x
u = - — h
exact Sln 1 ( )

(b) THE LEAST-SQUARE METHOD

In this method we take the inner product of the error by itself, and
the quantity thus obtained is required to be a minimum. Starting
" with

€= Ly —p (1.30)
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-we define F as

F = (e ey = (L) - p. L) — p) (131)
If the approximating function is

N
u= 3y ad (132
k=1
we minimise F by differentiating with respect to o;

oF

=0 i=12...N (1.33)
o

This yields

o & (ool
-2 <3’(Z ak¢k),p> +<p, p)} (1.34)

When ¢ is a linear operator, the equations simplify to

<-5’(Z ak¢k),-‘f(¢)> - KZ(¢d)p> = (1.35)

which can be written as

<-9” (Z akm) - p -9’(¢.~)> =0 (1.36)

Example 1.3

Consider the equation treated in Example 1.2. We take the second-
order approximation here also.

u=x(1 — xa, + x*1 — x), (a)
e=x+(=2+x—xNo; + (2 — 6x + x> — xp, (b)
Squaring £ and minimising it with respect to @, and a, we obtain
1
f =2+ x—xFdx =0
]

. (©
J‘ g2 — 6x + x* = x*)dx =0
o



