RICHARD V. ANDREE
JOSEPHINE P. ANDREE
DAVID D. ANDREE

Computer
Programming:

Techniques,
Analysis,
and

- Mathematics

COMPUTER PROGRAMMING

Techniques, Analysis,
and Mathematics

RICHARD V. ANDREE

Professor of Mathematics
Professor of Information and Computing Sciences
The University of Oklahoma

JOSEPHINE P. ANDREE

DAVID D. ANDREE

Prentice-Hall, Inc., Englewood Cliffs, New Jersey
}

© 1973 by Richard V. Andree
Norman, Oklahoma

All rights reserved, No part of this book may
be reproduced in any form or by any means
without permission in writing from the publisher.

109 8 7 6 5 4 3 2 1

ISBN: 0-13-166082-9 .
Library of Congress Catalog Card Number: 72-5254

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney
PRENTICE-HALL Of CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tekyo

PREFACE TO THE INSTRUCTOR

This book is designed to be read by students. Experience shows that stu-
dents can and will read, understand, and enjoy it. It is designed not merely
to teach FORTRAN 1V coding, but to teach efficient programming techniques.

Perhaps the most important part of this volume is the outstanding col-
lection of interesting problems. Users of the preliminary editions indicate
real student enthusiasm. These problems are nor the result of chance. A good
problem, well stated, is indeed a gem. A vast fortune in such problem-gems
is contained in this one volume. We hope you enjoy each one.

There is a tendency among some students to try problems first; then to
examine the ilfusttative examples; and finally, as a last resort, to read the text.
Knowing this, a good deal of additional instructional material is included in
the answer section, particularly for the beginning chapters. Each point in the
text is also covered in the problems. Each problem is designed to relate direct-
ly to knowledge which the student needs. There are more problems than any
one student or even one class can be expected to work completely, but don’t
be surprised if you have questions on problems that were not assigned.

Our experience is that Chapter |, which is designed to teach the student to
read simple FORTRAN programs, not to write them, should be covered
rapidly. In our own classes we usually work most of Problem Set 1-4 in class
during the first lecture, and assign Problem Sets 1-6 and 1-7 to be worked for
the second class meeting. Individual problems of Set 1-10 are assigned to be
worked for the third class session. Since the answers for all of the problems in
Chapter | are available in the back of the text, extensive class discussion is
unnecessary. As the student progresses further into the text, his need for
answers should diminish. Answers to odd-numbered problems are given for
Chapters 2, 3, and 4. Some problems require discussion and opinion rather
than programs or numerical answers.

Preface to the Instructor

This text may be used with any fixed-word-length, binary computer, with
or without terminals, as long as a FORTRAN IV (or WATFOR or WATFIV)
compiler is available. The last half of Chapter 8 uses the IBM 1130 assembly
language as an example. _

Throughout this text the student is encouraged to think and understand
on his own. The aim of this text is problem solving, not FORTRAN coding.
Mathematics is the study of basic structure, and this is a mathematics book.
Without an understanding of the basic structures of the techniques involved,
no real computing skill can be developed. Surprisingly, the mathematical
prerequisites for this course are usually met by the second course in high
school algebra. Some of the material in Chapters 1 to 4 has been used with .
ninth grade students. So skillfully are the additional mathematical concepts
evolved that, when the student completes the course, the vital mathematical
concepts have been developed along with the theory of computing. Although
your three authors have worked hard to accomplish this blend, the real credif
goes to the more than 100 college professors and high school teachers who
have used these notes during the last four years in summer institutes. Their
frank and occasionally jeering comments have resulted in myriad revisions,
which we hope have produced a book worthy of their cooperation.

One serious drawback in teaching computer programming in an academic
situation is that the student feels that computer time is “free” and hence has
little incentive to learn efficient computing techniques. Few employers favor -
this attitude. Our society can no longer afford the inefficiency of computer
programs which waste 409 of the valuable computer time to obtain inade-
quate answers. This book emphasises efficient techniques throughout.

This book provides the computing techniques and computer-related
mathematics that a beginner needs to continue in information and computing
sciences. It does not lull him into the belief that he now fully understands
what computing is all about. Many important doors are opened enroute
which the student may either explore or ignore as his own talents and inter-
ests, and those of his teacher, dictate. In short, it is the type of book from
which we sincerely wish we had been able to study.

Many years of teaching experience both in computing science and in related
mathematics have helped in the selection, arrangement, and presentation of
the material in this text. Chapters I, 2, 3, and 4, should probably be presented
in the order given. Any of Chapters 5, 6, 7, and 8, may be presented in any
order, and then the brief Chapter 9 provides an excellent closing for the course
with summaries and a review of the techniques for efficient programming
stressed in Chapters 2, 3, and 4.

D.D.A.
JP.A.
R.V.A.

vi

PREFACE TO THE STUDENT

This text was written for you. Your three authors have done their best to
teach you what you really need to know about computing—not merely
FORTRAN coding, but also the much more important topics that make the
difference between a dilettante and an expert.

It is easy to write computer programs that will run and produce results on
a modern computer. We have taught 7th and 8th graders to do so. Within
a week you will be able to write useful programs which will help solve prob-
lems that you might well consider impossible or at least unreasonable with-
out a computer. Here are two samples:

1. Without using existing tables, create a table showing the values of

X, xz, x39 xs9 xm, A/ s)\/3 X, »,4/ X, sin X, lOgX
for x = 0.1,0.2,0.3,...,9.9,10.0

2. Obtain at least one real solution of the equation
xa/sinx +42—76=0

Either of these problems could require hours of computation, if solved with-
out the use of a computer—yet with a computer ‘each can be solved in ten
minutes (within thirty seconds, once the computer instructions are written).

Such facility may seem a highly desirable goal itself—perhaps it is. How-
ever, it is merely a byproduct of our true goal, which is to teach you the simple
mathematical analysis necessary to solve problems efficiently, using both your
intelligence and the computer’s accuracy and speed to obtain the solution.
Even though a modern computer is an almost unbelievably reliable electrical
device (see page 7), it often produces unexpected answers for those who use
it. Sometimes these “incorrect” answers result from an error in theinstructions

vii

Preface to the Student

(program) given to the computer, but more frequently they occur because the
computer does not use the rational number system_with which most human
beings compute. Throughout this book, we, your authors, have worked hard
to help you avoid the pitfalls which plague most neophytes. Please let us guide
you along the charted path and teach you to avoid these difficulties.

It is easier to read any language than to write it. Chapter 1 teaches you,
to read Standard FORTRAN IV computer language and introduces concepts
and vocabulary needed throughout the course. Chapter 2 teaches you to write
programs, and gets you started in the important new study of algorithms
(methods). It also introduces some of the peculiar (nonfield) properties of the
floating-point number system. Knowing how to read and write (code) instruc-
tions for a computer is not enough. You also need an understanding of whar
to code—and of what not to code—and of the related mathematical algori-
thms. Top salaries in the growing computer field are reserved for employees
who are able to analyze problems and devise valid mathematical techniques
for their efficient computer solution, rather than those who merely write
computer instructions, based on the analyses provided by others. This book
has enabled many students to acquire the basic knowledge of Computer
Programming: Techniques, Analysis, and Mathematics needed to enter the
fascinating new world which computers are creating. It can do the same for
you if you will let it.

One of your coauthors, David Andree, served as a student assistant during
the more than four years this material was used in mimeographed form.
He rewrote those portions of the text that gave students trouble. This does
not mean the text will present no difficulties. A problem worthy of computer
solution is often inherently difficuit (as well as time-consuming and too tedious
to do by hand). It would be false teaching to restrict problems to easy ones.
Chapters 3 and 4 contain many problems worthy of serious consideration.

A few minutes examination of the Table of Contents will disclose the
general organization of the text. After that, you are ready to read Chapter 1.

viii

ACKNOWLEDGEMENTS

It is impossible to recognize individually the hundreds of teachers and
students who participated in the evolution of this text. However, it would be
negligent not to express our sincere thanks to two particular confréres:

Jeanne MacKay—who faithfully supervised the production of the prelimi-
nary manuscript from initial rough drafts to final proofs. Her common sense
and competence have made our task much easier.

Paula V. May—who started learning about computers using the first
draft of this book, and is now an instructor. Her suggestions and cooperative
assistance both as student and instructor have made our lives as well as this
text richer and more fun.

xvii

CONTENTS

Each instructor will, of course, emphasize those portions of this book
that most closely meet the needs and interests of his students. The original
material has been taught by several instructors in various schools. A suggested
number of lessons for each chapter based on this experience is presented as
a possible guide for teachers using the material for the first time. Somewhere
between 33 and 48 class periods, plus laboratory and testing periods, should
provide adequate coverage of the material for most students.

Chapter 1
INTRODUCTION AND THE READING OF FORTRAN IV 7

(2 or 3 lessons,
emphasizing Sections 1-9, 1-10.)

It is assumed that the reader has no previous experience with
computers. Since it is easier to read any language than to write
it, the basic concepts are introduced without emphasizing the
syntactical detail needed to write FORTRAN 1V. Readers with
experience in some computer language may wish to skim Sec-
tions 1-1 to 1-8 and start with Section 1-9.

1-1 Introduction 7

1-2 The Computer 3
Organization of a Computer 3
The Reliability of Modern Computers 7
The Terminal 7
The Keypunch 8
Problem Set 1-2 10

ix

Contents

1-3 Reading Basic FORTRAN IV 77

1-4 Closed-Shop Operations 78
Problem Ser 1-4 23

More on Reading FORTRAN 37
More General Programs 37
Problem Set 1-6 41

1-7 A Moving Average 43
Problem Set 1-7 47

1-8 A Bit More Sophistication 49

1-9 Writing FORTRAN 50
Acceptable Arithmetic Operations 51
Acceptable Functions 51
Other Acceptable Instructions 52
Other Conventions 54

N o,

1-10 Seven Steps of a Complete Computer Program 56
Problem Set 1-10 58

Chapter 2

COMPUTING IN FORTRAN IV 65
(6 to 8 lessons)

Computer arithmetic is beset with pitfalls. Foundations needed
for the more extensive analysis in Chapter Six are laid here
and used throughout the text. Good programming grows only
with a conscious effort to instill it from the beginning. Branch
instructions are introduced along with alphameric FORMAT
statements.

2-1 Errors in Computation 65
Problem Set 2-1 70
2-2 Exponential Notation 77
2-3 Some Strange Arithmetic 75
2-4 Rounding 77
Problem Set 2-4 79

2-5 Numbers, Variables, and FORMAT 87
Integers 81
Floating-Point Numbers 82
The WX Specification 84
Problem Set 2-5 84

2-6 Diagnostic Messages 87

2.7 The Fibonacci Sequence 83
Problem Set 2-7 93

Contents

2-8 The Branch Instruction 98
Arithmetic \F Instruction 100
Boolean (Logical) i F Instruction 101
Problem Set 2-8 104

2-8 Writing Headings and Messages Using FORMAT
Statements 705
H-Format in WRITE Statements 105
H-Format in READ Statements 107
A-Formar 109
Problem Set 2-9 111

2-10 Plotting Graphs (Optional) 778
Problem Set 2-10 122

2-11 Flow Charts 723
Problem Set 2-11 125

2-12 Saving Time and $ 7137
Problem Set 2-12 132

Chapter 3
SUBSCRIPTS AND DO LOOPS

(3 or 4 lessons)

The use of subscripted variables and DO loops provides
the reader with additional power and convenience as well as new
programming techniques that produce more efficient programs
with no extra effort,

3-1 The DO Statement 735
Problem Set 3-1 . 144

3-2 A Bit More Sophistication 746

3-3 Further Applications of the DO Statement 747
Problem Set 3-3 150

3-4 Subscripted Variables 753
Problem Set 3-4 158

3-5 The Computer in Our Society 764
Computer Music 167

Chapter 4

ADVANCED PROGRAMMING TECHNIQUES
(6 to 8 lessons)

The solution of equations in one unknown and of systems of
linear equations in several unknowns forms the framework for
the first part of this chapter. The fifty problems of Problem Sets
4-4 and 4-5 provide adequate programming challenge for students

xi

135

171

SIMULATION 223

Contents

of varied interests and ability. The many extras of extended
ANSI FORTRAN are discussed.

4-1 Solution of Equations 177
Problem Set 4-1 173

4-2 Solution of Simultaneous Linear Equations 787
Problem Set 4-2 187

4-3 FORMAT Statements 794
Problem Set 4-3 195

4-4 Additional Instructions (Optional) 799
The Computed GO TO 200
The INTEGER Statement 200
The REAL Statement 201
The DOUBLE PRECISION Statement 201
The COMPLEX Statement 201
The LOGICAL Statement 202
Arrays with the INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, or LOGICAL Statements 202
The IMPLICIT Statement 203
EQUIVALENCE Statements 203
DEFINE FILE Statement 204
Unformatted File READ and WRITE Statements 204
A Mathematical Aside 205
Problem Set 4-4 207

4-5 More FORTRAN 275
Problem Set 4-5 215

Chapter 5

(5 to 7 lessons)

Simulation provides a powerful aid to modern research in
many areas. Simulation often demands the use of pseudo-random
numbers, which are introduced in this chapter and used in several
ways. The Dance Program (Section 5-4) provides a somewhat
typical case history of how computer programs actually develop.
Students should recognize that programs may not emerge full-
blown from the programmer’s mind, but often evolve rather
slowly. Without dwelling on the sophisticated nature of the statis-
tical and physical theory involved, this chapter introduces the
reader to the use of pseudo-random numbers in several important
types of simulation.

5-1 Research Using Computers 223

5-2 Pseudo-Random Numbers 224
Problem Set 5-2 229

xii

Contents

5-3 Secret Messages 230
Problem Set 5-3 232

5-4 Dorm Dance Problem 232
Problem Set 5-4 241

5-5 Simulation 247
Bacteria in Samples (1) 242
Bacteria in Samples (2) 246
Problem Set 5-5 253

5-6 More Sophisticated Simulations 254
Bug | on a Cube 254
Bug 2 on a Cube 260
Bug 3 on a Cube 264
Problem Set 5-6 271

5-7 Ehrenfest Molecular Model 277
Another Model 276
Isomorphisms 277
Problem Set 5-7 277

5-8 Other Monte Carlo Techniques 279
Problem Set 5-8 280

Chapter 6

NUMERICAL METHODS 283
(4 to 6 lessons)

Good programming demands the mathematical analysis of
algorithms. Throughout this entire book a sincere effort has been
made to display the need for such analysis. This chapter empha-
sizes some basic techniques which every programmer must have
at his disposal. It is not a substitute for a good course in numerical
analysis, but does lay the foundation.

6-1 The Distribution of Fioating-Point Numbers 283

6-2 Some Vital Numerical Analysis 285
Problem Set 6-2 292

6-3 Mathematical Analysis of Computer Problems 297
Problem Set 6-3 305

6-4 Operation Bootstrap in Computing Programming 306
6-5 A Failure—So Far 373
6-6 Big Troubles from Little Errors 374

6-7 Sensitivity of Coefficients 378
Problem Set 6-7 320

6-8 The s/ Function 327

xiii

Contents

6-9 Approximating Functions in General 322
Problem Set 6-9 326

6-10 Approximating the Area Under a Curve 327
Problem Set 6-10 332

6-11 An Integration Problem 332

Chapter.7

SUBPROGRAMS 335
(4 to 6 lessons)

Modern programming involves the ability to write and check
subprograms, which are then assembled into a major program.
Skillful programmers use subprograms for much of their work.
This chapter not only introduces the art of writing your own
subprograms, but also the advantages and disadvantages of using
the subprograms of others, such as the Scientific Subroutine
Package.

7-1 Introduction 335
Problem Set 7-1 339

7-2 Writing Your Own FORTRAN Subprograms 339
Statement Functions 341
Function Subprograms 343
The EXTERNAL Statement 345
Subroutine Programs 348
Problem Set 7-2 353
7-3 The COMMON Statement 353
Problem Set 7-3 355

7-4 Array Arguments 355
Problem Set 7-4 361

7-5 Scientific Subroutine Package 367
Problem Set 7-5 366

7-6 Plot Routines 366
Problem Set 7-6 372

Chapter 8
ASSEMBLY LANGUAGE PROGRAMMING 375
. (2 to 4 lessons)

Sooner or later, a programmer discovers the need for a more
versatile language than FORTRAN. Assembly languages provide
this increased power at the cost of not being easily transferable

XiV e

Contents

from one computer to another. The general concept of a single-
address machine is used to introduce the concepts, and then
specialized using the IBM 1130 assembly language as an example,
The object of the chapter is to introduce the reader to the power
of assembly language programming, not to provide an entire
course in it.

8-1 Introduction 375

8-2 The Concept of a One-Address Machine 376
Index Registers 378
Indirect Addressing 379
Problem Set 8-2 380

8-3 1130 Hardware 380

8-4 Instructions 387
Short Instruction FORMAT 381
Long Instruction FORMAT 381

8-5 Special Registers 382
8-6 Arithmetic Operations 382

~

8-7 Effective Address Generaticn 382
8-8 The Basic Instruction Set 383
8-9 Coding in Assembly Language 388

8-10 Control Card Stacking 394
Problem Set 8-10 395

8-11 Indexing Using Index Registers 396
Problem Set 8-11 398

8-12 Program Relocation 398
Absolute Expressions 400
Relocatable Expressions 400
The EQU Pseudo-Operation 400
Problem Set 8-12 401

8-13 Floating-Point Operations 407
Standard Precision Floating-Point Format 403
Floating-Point Arithmetic Subroutines -404
Problem Set 8-13 409

8-14 Data Definition Instructions 409
Problem Set 8-14 411

8-15 Some Additional User-Created Subroutines 472
1130 CLOCK 472
Multiple Precision Integer Arithmetic 414
DCODE 475
Problem Set 8-15 {15

xXv

CONCLUSION 479

ANSWERS 433

INDEX 543

Contents

Chapter 9

(I or 2 lessons)

One reviewer remarked that “Chapter 9 alone is worth the
entire price of the book.” In this brief conclusion the authors
bring in summaries of good programming practice which can
help the reader advance from neophyte to expert in a very brief
period. A bit of important (we think) philosophy, advice on what
courses to take next, and a carefully selected reading list con-
cludes the text, which is followed by answers and a carefully

prepared index.

9-1
9-2
9-3

9-4

9-5

xvi

What Is and What Is Not a Good Computing Problem? 479

Preliminary Analysis 420

Saving Computer Time at the Coding Level 427
Good Practice Hints 422

What to Study Next 426

Courses Recommended for Data Processing 426
Courses Recommended for Scientific Computing 426
Courses for Computing as a Discipline 426

Suggested Reading List for Self-Study 427
Journals 427

Books 429

Manuals 431

Chapter 1

INTRODUCTION AND THE
READING OF FORTRAN IV

1-1

The computer is no longer a strange machine to be approached with awe. Introduction
Instead it is a useful, exasperating, and often indispensable servant which

will do exactly what it is told to do, providing you speak its language, but

not one bit more. It is this latter property that is so exasperating. There is

no button labeled, “Oh, you know what I mean, go ahead and do it.” A

computer—even a very modern computer—is not a giant brain: It is a mar-

velous piece of equipment—a logical engine.

An automobile jack will permit a frail girl to lift a heavy automobile, but
we do not say the jack has muscles. Nevertheless, it is true that the jack
permits a girl to accomplish a feat which, if done without assistance, would
require superhuman muscular strength. In an analogous fashion, a computer
can help man do many things that would require superhuman inteiligence—
but the computer itself is not intelligent—not yet, anyway. It has been said
that human beings are slow, error-prone geniuses while computers are fast,
accurate morons. The statement contains much truth.

Some people do not wish to learn all about computers—they wish merely
to be able to use the power of the computer; others wish to learn, in various
degrees, about the finer points of computer programming. Basic FORTRAN
1V, which this book discusses first, is a powerful language with ingenious
translation programs. After only a few hours of study you can place moder-
ately difficult problems on a computer and obtain results. After you have
learned FORTRAN, we hope that you will be interested in learning the
much more versatile “assembly language” for your computer so you can use
the full power of the computer on your problems. Experience in FORTRAN
provides a foundation for all programming. The basic concepts involved
remain unchanged. FORTRAN is available, with minor variations, on almost

1

