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PREFACE

In the last decade an outstanding problem in the field of stiff ordinary dif-
ferential equations has been to provide an error and stability analysis for non-
linear problems. The developments were initiated by Dahlquist with his lecture
at the 1975 Dundee Conference on Numerical Analysis where he introduced
the concept of G-stability for multistep methods. Also in 1975, Butcher pub-
lished his paper on B-stability which deals with Runge-Kutta methods. Both
these concepts, which are intimately related, generalize the fundamental pro-
perty of A -stability to nonlinear systems satisfying a one-sided Lipschitz con-
dition. The introduction of the one-sided Lipschitz condition into the analysis
of numerical methods for stiff systems has brought us a long step forward,
since for many stiff problems one-sided Lipschitz constants exist which are
essentially smaller than the large, positive classical Lipschitz constant. An
important theoretical consequence is that we can now derive  priori global
error estimates which need not be accompanied by the unrealistic classical
assumption that the product of the stepsize and the Lipschitz constant is suffi-
ciently small.

Since Dahlquist and Butcher invented their concepts of G-stability and B-
stability there has been much interest in nonlinear stability properties of
numerical methods for stiff differential systems. This has led to considerable
progress towards a satisfactory theory for numerical methods for stiff nonlinear
problems. Without doubt the developments have provided us with much more
insight and have led to a much better understanding of the performance of the
various methods. The object of the present monograph is to present a unified
account of these developments, although the text is confined to the well known
class of one-step Runge-Kutta methods. This has to do with our personal
interests of course, but also with our aim to present a research monograph of a
moderate size.

A first version of this text was presented by one of the authors at a seminar
organized in September 1982 by Professor J.M. Sanz-Serna at the University of
Bilbao in Spain. The seminar was attended by students and professionals in
numerical analysis from the Universities of Bilbao, Valladolid and Zaragoza.
This final text is also aimed at students and professionals in numerical
analysis. We have tried to make the material accessible to the less experienced
reader as well, though it is not meant as an introduction to Runge-Kutta
methods. Nor did we attempt to cover the whole theory of Runge-Kutta
methods. For example, important topics such at Butcher series, order stars,
and codes are not being treated. The text aims at students and scientific
researchers who already have some basic knowledge of stiff differential




vi Preface

equations and of Runge-Kutta methods, and of course, a thorough training in
applied mathematics is a prerequisite. We hope that the material we make
available and our way of presenting it will deepen the reader’s understanding
of solving numerically stiff differential equations.

The authors wish to emphasize that a book of this kind must owe a great
deal to research papers published by others. We therefore acknowledge all
those colleagues who have contributed to the subject of this book. In preparing
the manuscript the authors have benefited greatly from the willingness of Dr.
R. Frank and Professor M. van Veldhuizen for reading parts of an early ver-
sion. At this place we also mention that part of Chapter 8 emanates from an
unpublished note of Professor Van Veldhuizen. We gratefully acknowledge
him for supplying this note and for his permission to use it in this text. Spe-
cial thanks are due to Mrs. M. Louter-Nool for programming the numerical
experiments and for checking conscientiously all formulas and proofs. She
also assisted in preparing the indexes and in the final proof reading. We are
greatly indebted to Dr. L. Shampine who was willing to correct the whole
English text. He has provided us with an extensive list of remarks, corrections
and improvements. Lastly we acknowledge Mrs. L. Brown and Mrs. J. Kustina
for typing the manuscript.

Kees Dekker, Jan G. Verwer

Amsterdam, October 1983.
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SURVEY

The central theme of this monograph is the step-by-step stability of one-
step Runge-Kutta methods for stiff nonlinear ordinary differential systems.
The object is to present a unified account of the developments concerning non-
linear stability of Runge-Kutta methods which began with Dahlquist’s G-
stability paper in 1975. The text is divided into ten chapters.

Chapter 1 is devoted to the stiff problem itself. There we define the initial
value problem we are dealing with and recall the phenomenon of stiffness.
Further we introduce the one-sided Lipschitz constant and the more general
concept of logarithmic matrix norm. Nowadays both these quantities are con-
sidered to be indispensable mathematical tools in the perturbation analysis of
stiff equations, analytically as well as numerically. Loosely speaking, the loga-
rithmic norm, which is just an optimal one-sided Lipschitz constant when deal-
ing with inner product norms, replaces the classical Lipschitz constant. For
stiff problems the latter constant is too large to be of any use in a perturbation
analysis. It must be assumed here, of course, that the logarithmic matrix norm
can be chosen essentially smaller than the classical Lipschitz constant. The
logarithmic matrix norm was introduced independently by Dahlquist in 1958
(see Dahlquist [1959]) and Lozinskij [1958]. Since then it has been used in
various studies, most of which deal with ordinary differential equations. Our
treatment of the one-sided Lipschitz constant and the logarithmic matrix norm
is not exhaustive, but it is certainly sufficient for a first study. Much of the
material of Chapter 1 is based on Dahlquist [1959], Desoer and Haneda [1972],
Frank, Schneid and Ueberhuber {1978}, and Strom [1975].

In Chapter 2 we discuss the concepts of numerical contractivity and numer-
ical stability from a general point of view. Numerical contractivity means that
the difference, in a certain norm, of any two numerical solutions defined for
equal stepsizes will not increase as the integration proceeds. With numerical
stability we are referring to a weaker and less precisely defined numerical pro-
perty. Numerical stability means that in a sense the aforementioned difference
may grow as the integration proceeds, but not unboundedly. Here we distin-
guish convergence stability and computing stability which is, in fact, contrac-
tivity. By way of introduction we revert to the classical concept of absolute sta-
bility and review some important results for the constant coefficient linear
model system emanating from Von Neumann [1951], Hairer, Bader and Lubich
[1982] and Spijker [1983a]. Next, a rather exceptional contractivity property of
the well known implicit Euler method which goes back to Desoer and Haneda
[1972] is proved. For implicit Euler we then illustrate the advantage of using
the logarithmic matrix norm instead of the classical Lipschitz constant. The
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classical Lipschitz constant is large when the differential equation is stiff, hence
of no use for the numerical analysis. We also derive a general & priori error
bound for an arbitrary one-step integration method from which the importance
of contractivity and nonlinear stability can be explained. Chapter 2 concludes
with an instructive example illustrating the fact that as soon as one leaves the
class of constant coefficient systems, one cannot rely on the spectrum of the
Jacobian matrix to infer reliable information about the error propagation (cf.
Lambert [1978]).

In Chapter 3 we review the numerical methods we concentrate on, viz. the
one-step Runge-Kutta methods. All the properties of the Runge-Kutta methods
needed in subsequent chapters have been brought together in this chapter.
The emphasis lies on quadrature type methods. However we also pay attention
to singly-implicit and diagonally implicit methods. These two latter kinds of
methods are normally regarded as more attractive for computer implementa-
tion than the standard quadrature methods such as Gauss-Legendre, Radau
and Lobatto. It will be clear that many parts of Chapter 3 emanate from the
pioneering work of Butcher (see the Bibliography). One section is entirely
devoted to the W -transformation of Hairer and Wanner [1981]. This transfor-
mation greatly simplifies the classification and analysis of Runge-Kutta formu-
las.

Chapter 4 is completely devoted to the closely related topics of B-stability,
BN -stability, AN -stability and algebraic stability. Consequently, in this
chapter we often quote from Butcher [1975], Burrage and Butcher [1979], and
Crouzeix [1979]. We remark that B -stability, BN -stability and AN -stability
are in fact contractivity properties. A great deal of attention is paid to the
relation between these topics which means that we also describe the concepts
of reducibility as defined by Dahlquist and Jeltsch [1979] and Hundsdorfer
and Spijker [1981a].

Chapter 5 deals with the existence and uniqueness of solutions of the sys-
tems of nonlinear algebraic or transcendental equations which arise in the
application of the implicit Runge-Kutta methods. In most of the literature on
nonlinear stability and contractivity, one assumes in advance that existence
and uniqueness of solutions to these systems is ensured. This assumption may
be false, however; Hundsdorfer and Spijker [1981b] give an example which
shows that algebraic stability and dissipativity are not sufficient. In general,
additional conditions must be imposed to ensure existence and uniqueness for
dissipative as well as non-dissipative problems. We give a lot of attention to
the derivation of these extra conditions. Here we mainly base our treatment
on Hunsdorfer and Spijker [1981b}], Dekker [1982], and Crouzeix, Hundsdorfer
and Spijker [1983]. Furthermore, we also quote from Frank, Schneid and
Ueberhuber [1982a], as it has turned out that various results on existence and
solvability also play an important role in their work on B-convergence which
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we treat in Chapter 7. In the last section of Chapter 5 we briefly discuss
aspects of the implementation of implicit Runge-Kutta formulas. An
experiment with the singly-implicit code STRIDE developed by Burrage,
Butcher and Chipman [1980] is reported.

In Chapter 6 we discuss the concept of circle contractivity introduced by
Dahlquist and Jeltsch [1979]. Circle contractivity, or generalized disk contrac-
tivity, bears a close resemblance to algebraic stability. Circle contractivity,
however, can also be used for studying nonlinear contractivity properties of
explicit methods for certain classes of nonstiff problems. We focus our atten-
tion on this particular feature. We emphasize that Chapter 6 is completely
based on the 1979 report of Dahlquist and Jeltsch.

A well known phenomenon in the numerical integration of stiff differential
equations is the often disappointing accuracy of the numerical result when
contrasted with the order of consistency of the method. For Runge-Kutta
methods Prothero and Robinson [1974] have studied this phenomenon for a
simple, but very instructive scalar test problem. To deal with the general case
Frank, Schneid and Ueberhuber [1981a] invented the notion of B-convergence
which we discuss in Chapter 7. The idea of B-convergence is to derive & priori
error bounds which depend solely on the smoothness of the exact solution and
on a one-sided Lipschitz constant. Hence, under certain conditions, these
bounds are completely independent of the stiffness of the problem. The B-
convergence theory gives a great deal of insight into the process of integrating
a stiff problem. In particular, B-convergence theory shows that the celebrated
properties of superconvergence of quadrature methods is of only limited value
for stiff problems. To illustrate this point the chapter presents the results of
some numerical experiments. The greater part of Chapter 7 is based on the
work of Frank, Schneid and Ueberhuber [1981a,b; 1982a,b]. We note that the
subject of Chapter 7 is accuracy rather than stability. The B-convergence
theory, however, heavily leans upon various results on nonlinear stability,
which makes this B -convergence chapter fit nicely into our monograph.

In Chapter 8 we discuss the D -stability concept which was introduced by
Van Veldhuizen [1981]. D-stability is related to a particular class of linear
problems containing a small parameter, the stiffness parameter. It is not a sta-
bility property in the usual sense of stepwise stability, i.e., it is not related to
the evolution in time of the solution of the discretized problem, in contrast to
other concepts such as A -stability and B -stability. It is merely a boundedness
property of the numerical solution in the presence of a small parameter. In
this respect, D -stability is somewhat outside the scope of this monograph.
However, D -stability is useful in its own right because it assumes nothing
about the existence of a logarithmic norm of moderate size. Proofs of results
on D -stability are normally based on asymptotic arguments. The main pur-
pose of this chapter is to explain the concept and to provide some background

S S
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material.

Chapter 9 is entirely devoted to Runge-Kutta-Rosenbrock methods. These
methods are closely related to diagonally implicit Runge-Kutta methods. Most
practical implementations of the latter belong to the class of Runge-Kutta-
Rosenbrock methods. Rosenbrock methods do not possess contractivity and
nonlinear stability properties as strong as those of most implicit Runge-Kutta
methods. Following Hairer, Bader and Lubich [1982], we shall show that under
certain conditions these methods are able to produce stable solutions for non-
linear problems when the right hand side function can be split into a stiff
linear part and a nonstiff nonlinear part. If such a splitting does not exist, sta-
bility cannot be guaranteed. We shall illustrate this by discussing some results
on D -stability from Van Veldhuizen [1981] and Verwer [1982a,b]. In this
chapter it is also pointed out, following Verwer [1981], that nonlinear stability
properties of implicit methods, such as BN -stability, are difficult to exploit
when implementing the implicit method on the computer. The source of the
difficulty is the iterative numerical solution of the implicitly defined Runge-
Kutta approximation. Loosely speaking, the always disappointing difference
between theory and practice manifests itself here. The experiment with the
singly-implicit code STRIDE presented in Section 5.12 illustrates this point
clearly. In Section 9.7 we discuss a similar experiment with the Rosenbrock
code ROW4A developed by Kaps and Rentrop [1979] and Gottwald and
Wanner [1981].

The last chapter of the monograph, Chapter 10, deals with step-by-step sta-
bility in the numerical solution of evolutionary problems for partial differential
equations. For many discretizations of such problems the time-integration part
appears to be a numerical integration formula for stiff ordinary differential
equations. This implies that there must be close connections between stiff
problems and partial differential equations with respect to numerical step-by-
step stability. Following Verwer and Dekker [1983a], the object of the last
chapter is to illustrate these connections. The well known energy method from
partial differential equations plays an important role here. At the cost of some
repetition the material of Chapter 10 is more or less self-contained.

e



CHAPTER 1

STIFF DIFFERENTIAL EQUATIONS

This book deals with the numerical solution of the initial value problem for
stiff systems of ordinary differential equations. Throughout we shall use

P(0) = fay@), 0<t<T,y@O)=y,, (1.1)

to denote some problem or class of problems under consideration. Here y (¢) is
a real vector of m elements and f a real-valued vector function, possibly non-
linear in the dependent and independent variables.

For the sake of analysis we introduce an auxiliary function h: [0,7] — R™
and assume that any solution y to be considered satisfies

y@)—hOl < W), 0<:<T, (1.2)

where ¥: [0,7] — R is appropriately chosen and ||-|l denotes some vector norm
on R™. Associated with the functions & and ¢ is the convex region

M, = {teR™: It—h®)l < ¥1)). (1.3)

By definition any solution value y(r)eM,. The function 4 is allowed to be a
solution of (1.1) itself. In what follows M, is the domain of the function
f@,): M > R".

It will always be tacitly assumed that f is as often differentiable as the
numerical analysis requires. This implies that for all initial vectors y,eM,,
problem (1.1) possesses a unique solution for all ¢ €[0,T]. In such a situation it
is supposed that T can be chosen as large as we wish, e.g., infinite.

The first chapter is devoted to the stiff problem itself. By way of introduc-
tion we shall describe the phenomenon of stiffness in Section 1.1. The remain-
ing sections deal with the one-sided Lipschitz constant and, more generally,
with the logarithmic matrix norm. These concepts play an important role in
modern numerical literature on stiff problems.

1.1. Stiffness

The problems called stiff are diverse and it is rather cumbersome to give a
mathematically rigorous definition of stiffness. Consequently, in the literature
various definitions are seen, one being somewhat more precise than another.
The essence of stiffness is that the solution to be computed is slowly varying but
that perturbations exist which are rapidly damped. The presence of such pertur-
bations complicates the numerical computation of the slowly varying solution.

]




6 1. Stiff Differential Equations

We shall discuss a number of simple examples of stiff problems in order to
provide some background for the statements made above.

Example 1.1.1. Following Shampine and Gear [1979], we first consider the
scalar equation

y@) = A () +F@)—AF(t), =0, y(0)=p,, A<<O0, (1.1.1)
where F is a slowly varying function of ¢ only. The solution y () is given by
y () = F()+eMyo—F(0)),
or, relating the solution at time ¢ to time ¢ +7,
Y@ +1) = F@t +1)+eMyt)— F@)) (1.1.2)

Because A<<<0, it is clear that already after a very short time distance the tran-
sient, e [yo— F(0)], which is also called the stiff solution component or strongly
varying solution component, is no longer present in the solution y(z). This
means that, irrespective of the initial value y, the slowly varying function F(7)
dominates the solution to be computed on the larger part of the integration
interval [0,7). The second expression for the solution shows that at any time ¢
perturbations to the slowly varying solution F(r) exist which are rapidly
damped. In passing we note that slowly varying solution components are often
referred to as nontransient components or smooth components. The word
smooth is used in the sense of the derivatives being essentially smaller than the
derivatives of the transient components. []

To expose some basic aspects of solving numerically a super stable problem
like (1.1.1), we now apply the well known Euler methods

Yn+1 = Yut1f (nyn) (1.1.3)
and
Y+t = Yo T G 1Pn+1) (1.1.4)

Formula (1.1.3) is the simplest example of a classical explicit Runge-Kutta for-

mula (see Henrici [1962]), while (1.1.4) is the simplest implicit formula of the

Runge-Kutta family. Let us compare the approximations defined by (1.1.3)

and (1.1.4) with the exact solution y(f, +1), ,+1 = t, +7, given by (1.1.2). We
have

Yns) = )= FE)+ F(ta1), (1.1.2)

yut1 = A+ —F@+F(t)+F (1), (1.1.3)

Ya+1 = A=)y, —F @)+ (1.1.9
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(=70 [F (1) +7F (g 4 )= TAF (1, 4 )]

As explained above, y(1,)— F(1,) may be interpreted as a perturbation to the
smooth solution F(z) at t=1,. This perturbation is rapidly damped by the
negative exponential e*", Ar<.<<0. One may interpret the differences y, — F(t,)
in a similar way. The numerical method should be able to damp the differ-
ences for values TA<<<<0, and 7 should be adjusted only in response to varia-
tions in the function F(?).

From (1.1.4°) it is readily seen that implicit Euler performs very satisfac-
torily on equation (1.1.1). The differences y, — F(t,) are rapidly damped and
we even find that for any fixed 7>0, y, +| — F(#, +1) as TA > —co. The expli-
cit Euler method is not capable in solving (1.1.1) efficiently. The difference
v, —F(1,) is damped only if —2<tA<<0. This condition of numerical stability
imposes a severe restriction on the stepsize 7 if A<<<0, even when y, —F(t,) is
negligibly small. On the other hand, if y,~F(z,) and F is very smooth, the
approximation of F(z,+,) by F(1,)+71F(t,) will be acceptable for much larger
values of 7 than those admitted by the stability condition 7 <<—2/A. This
situation is typical when applying an explicit method to a stiff problem. The
stepsize is restricted by numerical stability rather than by accuracy. The super
stability of the differential equation turns out to be disadvantageous for the
error propagation of classical explicit methods.

Example 1.1.2. The general solution of (1.1.1) contains a strongly varying com-
ponent, the stiff or transient component, and a weakly varying component, the
smooth component. For linear systems y(z) = Ay(t), A a constant matrix,
such different solution components occur when the Jacobian matrix A
possesses eigenvalues which differ greatly in magnitude. Let us consider the
linear system

d
() = [0 _:_l]y(t), 120, y(0)=yg, >0, (1.1.5)

where d is a constant of moderate size, |d | <1 say, and ¢ is close to zero. We
have

e (e?—e ") /(1+de)
,y(t) = 0 e—c"'t

The transient component is given by e ¢ . Since € is very small, this com-
ponent dies out after a very short time. After this transient phase, the solution
is completely determined by the smooth component e?. In this phase of the
problem, we are faced with the task of computing the nontransient solution
while suppressing the transient one. The problem is then called stiff.

It is emphasized that the problem is not called stiff in the transient phase

yo, t=0. (1.1.6)




