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PREFACE

Laser action has been observed in all forms of matter and spans a spectrum ranging from
radiowaves to X-rays. The object of the CRC HANDBOOK OF LASER SCIENCE AND
TECHNOLOGY is to provide a concise, readily accessible source of critically evaluated data
for workers in all areas of laser research and development. The cmphasis is on the presentation -
of tabular and graphical data compiled by recognized authorities. Definitions of properties
and references to the original data sources and to supplementary reviews and surveys are
also provided, as appropriate. The previous two volumes in this series dealt with laser action
in all media and contained extensive tables of laser transitions and references. Volumes III,
IV, and V are devoted to the physical and chemical properties of optical matenals used in
laser systems and applications. '

The earlier CRC Handbook of Lasers with Selected Data on Optical Techn?logy contamed
several sections on optical materials. These sections have been updated and.expanded and
many new sections added to form Volumes III to V. The materials covered are almost
exclusively condensed matter. Because many properties are dependent in varying. degrees
on preparation methods, materials imperfections and measurement techniques, sgveral sec-
tions included discussions and descriptions of these specific characteristics and of materials
compositions. : -

Optical materials for laser systems encompass an extremely wide range of special property o
requirements and operating wavelengths and environments. Of necessity, the topmg.covex;ed'
in these volumes are selective. In some sections it was possible to be exhaustive; in others.
a more general survey is provided because extensive data tabulations already exist eISewhere
The applications of optical materials are continually expanding. Therefore an gttempt ha; -
been made throughout to include not only currently useful rhaterials but also. fepresentative
examples of broader classes of materials of possible future interest. One can frequently use .
observed trends in materials properties with composmon to select and tailor new matenals“"
having specific operating. characteristics. ' -

Data on optical materials can be presented from dlﬂerent points of view — hy matenal .
by properties, .or by application. For laser materials no single approach seemed fully ap-
propriate, therefore several formats have been utilized. A number of properties may be
relevant o a given application. As an example, for transmitting materials one may be -
interested. in optical, thermal, and mechanical properties, thus these properties are grouped
together withina single section. However, not all properties are covered within a particular
section. Because.of their spectal character, properties such as optical nonlinearities, radiation
damage, and fabrication are discussed separately. Characteristics of specific classes of ma-
terials such as glasses may also be covered in several sections depending upon its use as a
transmitting material, a filter material, an optical waveguide material, or a laser host material.
Indices at the end of each volume list individual materials and where data on specific
properties are located. fe

With the advent of lasers, nonlinear opncal phenomena have become 1mponam and bave -
been the subject of intense:study and application. The properties of materials for Mmﬁ
generation and two-photon absorption, nonlinear- refractive index, and stimulated Ramarn -
scattering properties of various opticals materials are included in Volume IH.. Daga on
radiation damage of optical crystals and glasses are also surveyed in this voﬁ;nie Vofun;e -
IV covers materials for fundamental uses: transmission (laser windows and lenses), ﬁltermg,
reflection, apd polarization. Materials for more specialized uses involving linear electrooptic, -
magnetooptic, elastooptic, and photorefractive effects and liquid crystals are also covered
in this volume. Volume V presents data on properties of materials for optical waveguides,
optical storage and recording, phase conjugation, lasers, and quantum counter applications.
Other sections cover optical coatings and thin films. The final section describes fabrication
techniques and procedures for all types of -optical materials. <= EX Y ‘



Laser-induced damage to optical components is an extremely importani comsideration for
many laser applications. Although it was originally planned to include a section on laser
damage, this topic will be covered separately clsewhere. In this regard, | welcome comments
about the contents and pres#tation in the present volumes and suggestions for materials
and properties to be included in future editions.

A handbook can never be completely current with the journal literature. Because of the
very nature of the preparation and publication process, one must accept the fact that a
handbook becomes out-of-date at the time of the final type setting. Although all sections
for Volumes III to V were solicited concurrently, there were delays in the receipt of some
manuscripts. Some sections were updated, but variations in timeliness, as evident from the
reference dates, remain.

These volumes are the result of the efforts and talents of many people to whom I am
indebted. | thank especially the contributors for the time devoted o preparing these com-
pilations and texts and the Advisory Board and contributors for their numerous helpful
comments and suggestions regarding the content and format. The staff of CRC Press, and
Senior Editer Marsha Baker in particular, have my thanks and appreciation for the preparation
of these volumes. Finally, I am grateful to my wife Pauline for her generous support of this
project.

Marvin J. Weber
Danville, California
February 1984
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1. NONLINEAR OPTICAL PROPERTIES
1.1. NONLINEAR OPTICAL MATERIALS

S. Singh

INTRODUCTION ..

When a material substance is subjected to electromagnetic radiation, the electrons of the

medium tend to be polarized. In the electric dipole approximation this effect is characterized

by an induced polarization, P;", or the electric dipole moment per unit volume of the medinm |

phenomenologically by the linear relation;

-

PYo = exPWE )  (C-m~?in MKS units) a o

where E, is a component of the electric field strength associated with the incident radiation,
€, is the permittivity of free space having the value of 8.854 X 10-2C-V~'-m~'in
MKS units or (/w) statC-statV='-cm~! in CGS (esu) units, and x§’ (w), a second-mnk
tensor for anisotropic media, is a complex quintity which is responsible for the familiar
optical phenomena of absorption, emission, reflection, and refraction. Thus,

(@) = XiP@) + V) ’ )

The index of refraction, n(w), and dielectric constant, €(t»), of a medmm are related to the‘ '

real part of the susceptibility by: _

¥

Il
1

€V, = 1 + x{"w) (MKS units) (3)

mw)
= g(w) = 1 + 4wy (w) (CGS units) 4
The absorption constant, a(w), is related to the imaginafy ‘;;art of the susceptibility as:
a(w) = (@XM ) (m™'MKS) )
= (4nw/c)x;"(w) (cm™',CGS) 6)

The number of independent components of the dielectric tensor, €, (or the linear suscep-
tibility tensor x’), for different crystal classes and for isotropic media are given in Table
1.1.1.

For large values of the optical fields, such as those associated with intense radiation from
lasers, the induced polarization in a medium is no longer a linear function of E. In order to
describe the nonlinear optical effects which can occur under such conditions, it is convenient
to expand P as a power series in the electric field, E, and magnetic field, H, and thei; time
and space gradients present in the nonlinear medium.!* Thus, for a lossless nonmagnenc
medium one can write qualitatively: .-

@0

8850208
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. Table 1.1.1
FORM OF THE DIELECTRIC TENSOR ¢, (OR FIRST-ORDER
SUSCEPTIBILITY TENSOR x4’ FOR VARIOUS CRYSTAL CLASSES

- €, O O
Cubic and isotropic system | 0 ¢, O
0 0 e,

hexagona! systems 0 e 0

Tetragonal, trigonal, and €, 0 0
0 0 ¢y

€, 0 O
Orthorhombic system 0 €, 0
0 0 ey

Monoclinic system e(,), 0 ‘{')’
(unique axis oy) € e; €
€, €; €,
Triclinic system €, €, €,
€y €y €y
o Pws) = elXu(@a)Ewy) + Xadw K (w,)E (w,)
‘-.“: . . . N
+ glx;'kl('ma;wl’wz)Ek(m:)El(wz) - gzlx‘i}l'd(_"’u;wnmz)Ek(‘”i)Ht(wﬂ
+ Bl atm( — 06;0,,0)E (0 )K(0,)E, (03,)
+ BaXum( — 0,30,,0,,0)E,(w,)E{0,)E, (®3)

+ XL~ @y30,,0,,0)Ew JEA0)H, ()

+ BeXfin — 00301, 0, 0E (0 )Ef0)H, (w5) +..] &
wherej, k, I, m . . . are Cartesian subscripts obtained by the Einstein summation convention
of repeated indexes j, kK, L, m ... = x, ¥,z and g,, 8,, 81 ... B are degeneracy

factors arising from intrinsic permutation symmetry. The frequencies (having both positive
and negative values) satisfy the relation:

W, =w + w0, + o, +... 8)

In Equation 7, P(w), E(w), and H(w) are the Fourier complex amplitudes at w. Thus,

Pa,t) = (1/2)[P(w)e$(p ik‘r— at) + cc] 9
E(r,t) = (172)[E(w)exp ik * r — wt) + ¢~ c] (1d
H(r,t) = (172)[H(w)exp ik - t — wt) + ¢ ] (1)
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Table 1.1.2
NONLINEAR OPTICAL PROCESSES*!!

.

Susceptibility Optical process Ref,

X — 2w5w,w) Second harmonic generation (SHG) 12
(g = 1/2) .

X0, — @) Optical rectification (OR) 3
(g = 1/2) :

XA~ w,0,w) - Linear electrooptic or Pockel's effect 14

‘ (EO) (g = 2)
X — 0, X 0 w,,0,) Parametric (sum) or difference mixing (PG) 15—23
w +w, = o, g=1 .

Xad®) Optical activity and frequency mixing 24, 25

Xittl — Iwiw,0,w) Third-harmonic generation (THG) 228 )
(8 = V/4)

Xjamd — 20:0,0,0) Electric-field-induced second- harmomc 26, 28
generation (FISHG) (g = 3/4)

Wil — Wy300), 00,003,038} Three-wave sum mixing (g = 3/2)

Xl — ©:0,0,0) Quadratic electrooptic or DC kerr effect (g = 50, 51
3/4)

Xl — 00,6, — ) Optic-field induced birefringence or 29, 30
self-focusing (g = 3/4)

Xl 0,30, — 03,.0,) - Optical kerr effect (g = 3/2) ‘ 48

Ximl®: — 2030,,0,, - @,) Three wave mixing (TWM) (g = 3/4) 28, 52

Imy . — w0, —w,.w) ' Stimulated Raman, Brillouin, and 3947
b : electronic Raman scattering -
(SRS, SBS, SERS) (g = 3/2)

Imy . — 00,0, —w,) Two-photon absorption and inverse 35, 37,
: Raman effect (g = 3/2) 38 Fy
1My — W0,0, — ) Two-photon absorpuon‘smgle frequency) 3134,
(8 = 3/4) 36
MY it — @30,0,0, — @, — W) Three consecutive photon absorption 49
(g = 15/4)
E(~w) = E'(w) - (a)
) 0_; = —w () .
kK,=-K ©
K = nw/c (d), ¢ being the velocity
of light in vacuum , : (12)

The nonlinear optical susceptibilities, X, ;» X m» 2and higher-order ones give rise to a large
variety of nonlinear optical phenomena. A number of these susceptibility tensors and the
types of optical processes associated with them are listed in Table 1.1.2. Also included in
the table are the relevant references and the degeneracy factors. Review articles and intig-

“ductory textsoan nonlinear optical effects can be found in References 3 1o 11. -

More than a decade has elapsed since the last ‘publication of the author’s chapter on
nonlinear optical materials in Reference 54. Since then, the number of nonlinear materials
measured has more than doubled. In the present revised chapter this compilation is brought
up to date through 1982. In addition, at the suggestion of the editor, Dr. M. Weber, data
on third-order optical susceptibllmcs are also included.

SECOND-ORDER POLARIZATION AND ITS SYMMETRY PROPERTIES

.o .
For the general case of monochromatic waves of angular frequencies w,, w, ... w,
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incident upon a medium, the jth Cartesian component of the induced polarization density,
P, at the frequency @, = @, + w, + ... + o, due to the rth order nonlinear

susceptibility, x'” can be written as:

PV (w,) = eo[ 2 2(— W, )X, ur{—wa;m,.ml-"mIEu,(m,)Eaz(wz)'"E‘,r(uJ,)}] (13)

@ {r.of

~where g is a degeneracy factor arising from the number of distinguishable permutations of
- the frequencies. The summation is carried over all of the distinct sets of w;, w, ... .

For the specific case of SHG, w, = w, = w and g = '/,, the second-order polarization
at the harmonic frequency 2w is given by:

PPQ0) = €, 2(1/2)X; — 20;0,0)E(w)E (W) (14)
k.l

There is a considerable amount of confusmn in the literature about the relation between
induced nonlinear polarization and nonlinear susceptibility. Thé following conwention is
adopted here to.avoid this confusion. The second-order noniinear coefficient is denoted by
d%) and is related to the second-order nonlinear susceptibility tensor X3 by:

Xid = 2dg (15)

In order to express the induced nonlinear polarization due to various second-order nonlinear
processes, X in Equation 13 is replaced by 2 4). Thus, in the case of SHG. the induced
polarization at the harmonic frequency 2w given by Equation 14 is expressed as:

Pm(zm) €, Zd;,f}( 200 m)E*(m)E,(u)) (16)

Similarly, the induced polarizations associated with other second'-order processes are ex-
pressed in terms of d by using the proper g values from Table 1.1.2.

The SHG coefficient d,; is a3 X 3 X 3 third-rank tersor. Since the order in which the
electric field components are written in the right hand side of Equation 16 is of no significance,
the ds satisfy the permutation symmetry:

dpf —20,0,0) = d,(—20;0,0) an

This property is similar to that. of the piezoelectric tensor (by virtue of which an electric
polarization is produced in a- medium when it is subjected to a stress). By analogy with the
plemelectnc tensor, for convenience it is possible to write the nonlinear optical tensor,

2, in a contracted form which reduces the maximum number of independent SHG tensor
elements to 18. In the contracted form, the symmetric suffixes k and / are replaced by a
smgle suffix, m, that takes the values 1 to 6. The relation between the contracted and
uncontracted elements can be expxessed by:

‘ L [k if k =
d"""d‘"’"f'{g—(k+z) if k # I (18)

Thus, the relation between m and &/ is

“ 1720 ﬂ

=

it



