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CHAPTER 0

INTRODUCTION

There are several reasons for my writing this book. Firstly, in nu-
merical analysis classes at the senior-first year graduate level, I find that
students who claim to know C do not in fact know it very well. In partic-
ular, pointers, arrays, dynamic memory allocation, etc., are troublesome.

Secondly, from my own experience of learning C, I found that the
examples in existing texts were mostly system-oriented; few if any involved
scientific computation. In 1990 I was shocked to read in PC Magazine a
statement by a veteran programmer to the effect that, despite many years
in the profession, he had never written a single computational program.
Although there are many nice references on C, I do not know of any at the
introductory level which are written from the viewpoint of a mathematician.

Furthermore, as I learned C, I wished for a mathematically oriented
reference in which I could look things up quickly. It is certainly true that
the recent excellent publication Numerical Recipes in C almost fits the bill;
there it is assumed that the reader knows C already. In this book I will
assume that the reader already knows some language and is familiar with
the uses of loops, if-then—else statements, etc.

This book is not a text on the C language proper, nor is it a text on
numerical analysis. It is intended to be a guide for learning C from the
viewpoint of numerical analysis. As such it is a hybrid, perhaps to be used
as a supplement in a course in numerical analysis. I intend it to be more or
less brief and inexpensive, so that students can readily afford it. Indeed, I
quote from [KR]: “C is not a big language, and is not well-served by a big
book.”

How does one learn a new language? The answer is: by reading a book,

1



2 Chapter 0 Introduction

by studying the code of others, and by sitting down at your terminal and
enduring the edit—-compile-run cycle until you get it right. The intended
audience is probably split into two groups: one which uses a PC under
DOS (or a Macintosh) to develop programs and another which uses UNIX.
It is well-known that large-scale computation under DOS is impossible.
Nevertheless program development on a PC is very convenient, and there
are several nice C—compilers available. On the PC-level, I use the Microsoft
“Quick C” (v. 2.5) compiler. For UNIX, I have in mind gcc, the GNU C-
compiler. Both understand ANSI and are a pleasure to use. I omit the
Borland product and all others simply because I have never used them.

While graphics are built into “Quick C,” one can use gcc to write
the results of a computation to a file and then feed the file to, say, GNU-
PLOT, another GNU product which swallows files and produces nice two—
dimensional graphics. The most recent version of this program (v. 3.0)
can display three—dimensional graphs as well. These GNU products are
excellent, the price is right and they work as advertised. Since I have not
yet contributed to the Free Software Foundation, I feel this “plug” is war-
ranted! Nothing in this book is compiler-specific; all programs should run
on nearly any C—compiler, modulo a few minor changes.

In recent years several magnificent programs have appeared in the
mathematical area: Mathematica, Macsyma, Maple, Derive, Gauss, Mat-
lab, etc. In view of all of this power, should you still consider learning a
language? The answer is an unqualified YES. The nature of this business is
so specialized that you will not always be able to get one of these programs
to do what you want. Moreover, the computation of solutions to large-scale
Partial Differential Equations is an ad—hoc process for which the ability to
write your own code is indispensable. If you require only small computa-
tions, BASIC is easy to learn and use. In my opinion, Microsoft “Quick
Basic” v. 4.5 is a tremendous program and is to be highly recommended.
For larger computations, of course, Fortran has been the standard in sci-
entific computation, and superb libraries are available. These libraries are
now available in C.

C is a general-purpose language which has been traditionally used in
systems programming. Indeed, UNIX is written in C. C can be adapted to
a broad spectrum of applications and boasts wide choices of data types, e.g.,
pointers, structures, etc. It contains a large set of operators and control de-
vices, yet it is a “small” language. The standard run-time libraries contain
code for dynamic memory allocation, input/output, etc. Moreover, C'is to
be recommended for its portability, efficiency and elegance, and is certainly
in favor in academics and in the real world as well. There are some draw-
backs from the scientific-computation point of view. For example, there
is no built-in exponentiation function, nor is there a built-in facility for
complex arithmetic. Of course, these computations are still possible in C,
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but a speed penalty is incurred.

A word or two about the plan of the book: Chapter 1 is an overview of
the C language, put in terms of mathematical examples. Chapter 2 deals
with the uses of pointers , their applications to memory allocation for vec-
tors and matrices, etc. In Chapter 3 we cover certain smaller topics which
did not seem to fit elsewhere, and some of the fine points. The last chapter
of the book covers special topics, such as linear algebra, differential equa-
tions, etc. My intent is for you to find some nontrivial example programs
here, as well as some of the mathematical background.

An indication of the proofs of those results which are not too detailed
will be given. In my opinion, the only way to really understand an algorithm
is to first prove it converges, and then to code it. Of course for most real
problems encountered in practice, the idea of giving a rigorous proof may
not be achievable, but there is nothing wrong with professing this as a goal.

As for background, that of an advanced undergraduate in mathematics
or the physical sciences should be sufficient. An extensive knowledge of real
analysis is not required, but familiarity with standard topics (such as the
convergence of a sequence, the Mean-Value Theorem, Taylor’s Theorem,
etc.) is assumed.

Here are some comments about the programs. Undoubtedly there will
be some errors, typos, etc. Rather than strive for the slickest possible
coding, I have tried to make the programs simple and readable. Thus I
do not claim that these programs are the best available, nor that they
are optimized. If you can understand the coding of the basic form of an
algorithm, then later on in life when you use a “canned program” you may
feel fairly confident that you understand what is going on. (There is perhaps
an analogy here to the study of special functions.) Each C function used in
a program is (at least at the beginning of the book) explicitly included at
the top of the file. While this is repetitious, it renders most of the programs
self contained. I have kept the number of special files to be “included” to
an absolute minimum for simplicity. I encourage you to experiment with
the programs, and to alter them to suit your needs. I would be pleased to
hear about errors, bugs, etc.

The “tolerance” 5 x 10720 is (arbitrarily) used to test a denominator
before a division is performed. The “stopping criterion” in iteration loops
varies in the programs. This tolerance may have to be adjusted (i.e., re-
laxed) if the data of a particular problem are “large.” When the elements
of a symmetric matrix are to be read from files, we always construct the
data files by entering the first row, then the second row (from the diagonal
to the right), etc. For the sake of uniformity we use double precision in
most of the book (with the exception of the first few programs). This is
consistent with calls to the functions in math.h, but can be easily changed.

A major topic for which C is employed is string handling. This is
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not discussed in this book, since the emphasis is on scientific computation.
The manipulation of strings can be tricky; please consult the canonical
reference [KR] for details. A related reference is [HS] which contains topic—
oriented material on the C language proper. Both of these books contain
descriptions of the standard libraries and are to be highly recommended.

There are other omissions in this book, e.g., unions, linked lists, the
use of the bitwise operators, etc. Moreover, not all of the properties of the
built-in functions (e.g. printf, scanf) are fully exposed. Therefore you
will not become a C master by reading this book alone. Some topics have
been omitted for considerations of length, others because I have never used
them. Thus I urge you to consult other references for a more complete
picture of C as a language; here we will use and study C with a specific
goal in mind.

The numerical integration of Partial Differential Equations is an ex-
tremely interesting subject and is at the forefront of modern research in
applied mathematics. The sheer size of many problems is daunting. Fur-
thermore, the development of algorithms to accurately handle nonlinear
phenomena is in its infancy. For these reasons a practitioner or student in
the area of applied mathematics simply must be able to code his or her own
work. The C language is a perfect environment for this and, modulo muta-
tions, it is sure to be around for many years. A final quotation from [KR],
which I have found to be appropriate, is “C wears well as one’s experience
with it grows.”
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SOME COMPILATION/RUN-TIME TIPS
1. Using Microsoft QC 2.5 on a PC

After entering your source code with the editor, just press F5 to compile
and run. In my autoexec.bat file, I include the line
set cl=qcl /AS /01
This uses the small memory model and optimizes loops. From the command
line in the QC 2.5 directory, use qcl filename.c. The executable is then
named filename.exe and is run by typing filename at the DOS prompt.

2. Using gcc on a Unix Machine

When using EMACS, type ESC-x compile after entering your code in

the editor. In the minibuffer, enter the command

gcc filename.c -1m

(With older versions of gce you may have include a switch as in gcc -
traditional filename.c -1m.) A small window will open which lists
compilation errors, if any. If errors are detected, enter the command ESC-x
next-error. This positions you in the source code at the offending point,
and you can take appropriate action. Once the compilation succeeds, exit
to the command line. The executable has been called a.out and you run
it by simply typing a.out.

Should the program fail and dump core, you need to use dbx as follows.
First, recompile your program with the -g option. Then enter dbx -r
a.out core. Several (perhaps undecipherable) messages flash by, along
with some hex addresses. When it pauses, enter where. The explicit line(s)
will then be tagged, and you can hope to fix things.

In the above, -1m links to the math library, and ~traditional (if
needed) allows gcc to understand ANSI. The latest version of gee (v. 2.0)
compiles ANSI C by default. Some other useful options for gcc are

-0 outfilename renames the executable to ‘‘outfilename’’
-0 optimize for speed

In EMACS you can of course edit the compile command in your .emacs
file to read as above. I suggest that you also edit your .cshrc (c-shell run
commands) by including a line like this making ‘gc’ an alias:

alias ’gc gcc \!* -1m’

Lastly is a caveat on the use of the Sun Microsystems C compiler. As of
this writing (1991-92), Sun has not yet updated its compiler with a switch
rendering it capable of understanding ANSI C. Therefore the programs in
this book will not run under the Sun C compiler.
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HOW TO OBTAIN THE PROGRAMS

All of the programs in this book are freely available on Internet. Here
is the procedure for obtaining them:
Enter the command
ftp iu-math.math.indiana.edu
or

ftp 129.79.147.6 .

At the login prompt login:, enter anonymous. Any string will work for
the password.

Change directories by entering the command
cd pub/glassey .

If you are using UNIX, enter at the ftp prompt binary. Then get the
relevant file by entering

get csrcrtg.tar.Z.

Once you have obtained this file, you can uncompress it with the UNIX
command

uncompress csrcrtg.tar.Z.
Then enter the UNIX command
tar -xvf csrcrtg.tar.
For convenience we also place in the same directory an uncompressed
ASCII listing of the programs whose file name is csrcrtg.txt. After chang-

ing directories as above, enter at the ftp prompt

get csrcrtg.txt .



CHAPTER 1

STD TUTORIAL

FIRST PRINCIPLES

Please recall my philosophy that the only way to learn a language is to
read a book (this one, or [KR], or another), to read the code of others,
and then to sit down and write programs yourself. I assume that you are
already familiar with (or are now studying) Numerical Analysis. Program
line numbers are not used in C. Nevertheless, for reference purposes we dis-
play source code using line numbers. The program listings themselves
appear in typewriter font.
We begin with

/* Comments are enclosed like this */

The first example program will use Simpson’s Rule to approximate the
value of the integral I = fol exp(—z?)dz. As you know, Simpson’s Rule
looks like this:

ay [ fayde = 022 [f(a) +4f (—}’3) ¥ f(b)] +E,

—(b—a)’ ¥ . .
where the error E = —("—;)5%4——(-5—) for some point £ € (a,b). Let’s ignore

the error term for now so that I is approximately equal to

[exp(0) + 4 exp(—0.25) + exp(—1)]
6

= (0.74718.

(1.2)
We'll write a C program to compute this:

7



8 Chapter 1 Std Tutorial
/* Simpsoni.c */

1
2

3 # include <stdio.h>
4 # include <math.h>
5
6

main( )
7 {
8 float s; /* floating point variable */
9 /* to hold the sum */
10 s=(exp(0.0)+4.0%exp(-0.25)+exp(-1.0))/6.0;
11 printf("Integral=%f\n",s);
12 }

There is a lot here! Firstly, every C' program has a “central” body
called “main.” Notice the empty parentheses after “main.” The body of
the program is always enclosed in braces, { on line 7 and } on line 12. Each
executable statement in a C' program is terminated by a semicolon, as you
see on lines 8, 10 and 11. Above the main part of the program on lines 3
and 4 you see two “include” files, whose appearance is heralded by the #
symbol. The file math.h contains type definitions of standard mathematical
functions such as exp(z), sin(z), etc. The file stdio.h is a similar “header”
file where the compiler finds the required information on standard input
and output. The program itself is simple. You must first define your
variables in C. Here we have only one called s, which is a floating point
number, hence the declaration float s on line 8. On line 10 s is computed
according to the formula (1.2). It remains only to communicate the results,
which one does by calling the function printf. (This stands for “print with
formatting”.) The line

printf ("Integral=Y%f\n",s);

says: “print to the screen the value of the floating point variable s, calling
it ‘Integral’”. Any desired string output (such as the word “Integral” here)
is enclosed in quotes. The symbol %f is a float format specifier; the “\n”
gives us a new line in the output. Please note the use of real floating point
values: 1.0 instead of 1, etc.

Let’s change a few things, but only one at a time. Suppose the function
you are integrating is more complicated: f(z) = exp(v/1 + z% —z). We do
not want to type this in three (or more) times, so we add at the top a
function definition, or function macro, like this:

# define f(x) (exp(sqgrt(1.0+(x)*(x))-(x)))

There is a space after f(r) and before the “(”, but there must be
no space between the “f” and the “(”. Notice that the line itself is not



First Principles 9

terminated with a semicolon, and that the entire expression is enclosed
within parentheses. The other relevant point is that each time the argument
x appears, it is enclosed in its own set of parentheses. This is important;
such a function-type macro will not execute correctly without these. Use
parentheses liberally!

The entire program to compute I = fol f(z) dz now appears as:

1 /* Simpson2.c */

2

3 # include <stdio.h>

4 # include <math.h>

5 # define f(x) (exp(sqrt(1.0+(x)*(x))-(x)))
6

7 main( )

8 {

9 float s; /* floating point variable */
10 /* to hold the sum */

11 s=(£(0.0)+4.0*£(0.5)+£(1.0))/6.0;

12 printf("Integral=%f\n",s);

13 }

It’s even easier, isn’t it? What if the function f(r) were much more
complicated? Then we'd write a separate C function to find its value,
and rewrite the Simpson program so that it receives this C-function as an
argument (this is called a pointer to a function). This will be discussed in
Chapter 2.

Perhaps you now think that the algorithm is too crude, which is true.
Such an approximation over a larger interval is not likely to be very ac-
curate. Therefore we now consider the Composite Simpson’s Rule. The
integral to be approximated is again written as I = fab f(z)dz. One parti-
tions [a,b] into equal subintervals

b—a

(1.3) z;=a+ih, i=0,1,...,N, where h= N

We can write the composite rule as

(1.4) % ( J(@io) +4f(z,_y) + f(z)) — E
hl 1 N-1 N
=2 [f@+7®0) +2 3 fla) +43 fl@iy :
i=1 1=1
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where, for some point & € (a, b), the error E is given by

1
L5 E=——(b-a)f®()nt
(15) 5255 (0= A1 D(©)
This form of the error does not result directly, but comes from the following
“mean—value” theorem: Given a continuous function f on an interval [a, b]
and a sequence of values {g;}I-, all of one sign, there exists a point £ € [a, b]

such that " n
3 fzde = £6)D g
i=1 =1

This is quite important and merits a few lines of proof. Without loss of
generality we can assume that g; > 0 for all i. Let the function f(x) take
values in the interval [m, M] for z € [a,b]. Then

n n n
ngi < Zf(xi)gi < Mzgn Le.,
i=1 =1 =1

m < Zizlnf(xi)gi <M.

i=1 gt
This says that the number

Z?:l gi

lies between the extreme values of f, and thus, by the intermediate value
theorem, is equal to f(£) for some point &.

To code this we evidently need additionally two integers (int), N and
i. Then we simply add up (over 1 < i < N) contributions such as those
in the previous program using a for loop. Here it is for N = 10 and

I(f) = fol exp(V1 + 22 — z)dz:
/* Simpson3.c */

# include <stdio.h>
# include <math.h>
# define f(x) (exp(sqrt(1.0+(x)*(x))-(x)))

main( )

{

int i;

float h,s; /* step size and sum variable */

O O N A W N

- =
= o
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12 8=f(0.0)+£(1.0); /* initialize the sum */

13 h=1.0/10.0; /* use 10 points this time */

14

15 for (i=1;i<=9;i++){

16 8 =8 + 4.0%f((i-0.5)*h)+2.0*f(ix*h);

17 } /* end the for loop */

18

19 S =8 + 4.0%f(9.5%h);

20 s =8 * h/6.0;

21

22 printf("Integral=%f\n",s);

23 } /* end main */
The notation ¢ + + means increment ¢ by one; similarly ¢ — — means

to decrement ¢ by one. (There are more sophisticated properties of these
operators, to be discussed later.) Notice the three parts in the for loop on
line 15 are separated by semicolons, and that the entire loop is enclosed
in braces. (While this is not necessary for a body consisting of only one
line, it is not a bad practice to always enclose the loop body in braces.)
The only other change is the integer ¢ defined on line 9. The variable s is
then initialized on line 12. C allows one to initialize variables at the time
of their definition, so we could shorten the program by replacing the lines

float h,s; /* step size and sum variable */
s=£(0.0)+£f(1.0); /* initialize the sum */
h=1.0/10.0; /* use 10 points this time */
by

float h=1.0/10.0,8=£(0.0)+£(1.0);
/* step size and sum variable */ .

There is some “type-mixing” above, e.g., what is the meaning of the ex-
pression i * h? We postpone this briefly; please see the discussion below.

C allows a shorthand to abbreviate operations such as s = s + a,
s = s *b, etc. Thus we can write s =s+aass+ = a,and s =3s+*a as
s * = a, etc. This is very convenient and may be more efficient; you'll get
used to it soon. Thus the sum computation in the for loop above (on line
16) could be succinctly written as

s += (4.0%f((i-0.5)*h)+2.0*f(i*h));

By the properties in Chapter 3, an expression of the form x * = u+1.0
means x = xx(u+1.0).
Of course we can write for loops which run “backward”

for (i=N;i>=1;i--)



