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Preface

Computer Science has been, throughout its evolution, more an art than a
science. My favourite example which illustrates this pointis to compare a major
software project (like the writing of a compiler) with any other major project
(like the construction of the CN tower in Toronto). It would be absolutely
unthinkable to let the tower fall down a few times while its design was being
debugged: even worse would be to gpeniit to the public before discovering some
othet fatal flaw. Yet this mode of operation is being used everyday by almost
everybody in software production.

Presently it is very difficult to “stand on your predecessor’s shoulders”, most
of the time we stand on our predecessor’s toes, at best. This handbook was
written with the intention of making available to the computer scientist,
instructor or programmer the wealth of information which the field has
generated in the last 20 years. :

Most of the results are extracted from the given references. In some cases
the author has completed or generalized some of these results. Accuracy is
certainly one of our goals, and consequently the author will cheerfully pay
$2.00 for each first report of any type of error appearing in this handbook.

Many people helped me directly or indirectly to complete this project.
Firstly I owe my family hundreds of hours of attention. All my students and
colleagues had some impact. In particular I would like to thank M. C.Momard,
N. Ziviani, J. I. Munro, P. A. Lanson, D. Rotem and D. Wood. Very special
thanks go to F. W. Tompa who is also the coauthor of chapter 2. The source
material for this chapter appears in a joint paper in the November 1983
Communications of the ACM.

Montevideo : G. H. Gonnet
December 1983
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Chapter 1: INTRODUCTION

This handbook is intended to contain” most of the information available on
algorithms and their data structures; thus it is designed to serve a wide spec-
trum of users, from the programmer who wants to code efficiently to the stu-
dent or researcher who needs quick information.

The main emphasis is placed on algorithms. For thgse we present their
description, code in one or more languages, theoretical results and extensive
lists of references.

1.1 Structure of the chapters

The handbook is organized by topics. The second chapter offers a formaliza-
tion of the description of algorithms and data structures, chapters 3 to 6 dis-
cuss searching, sorting, selection and arithmetic algorithms respectively.
Appendix I describes some probability distributions encountered in data pro-
cessing; appendix II contains a collection of asymptotic formulas related to
the analysis of algorithms; appendix U1 contains the main list of references
and appendix IV contains alternate code for some algorithms.

The chapters describing algorithms are divided in sections and sub-
sections as needed. Each algorithm is described in its own sub-section, and all
have roughly the same format, though we may make slight deviations or cmis-
sions when information is unavailable or trivial. The general format includes:

(1) Definition and explanation of the algorithm and its classification
according to the basic operations described in chapter 2.
) (2) Theoretical results on, the algorithm’s complexity. We are mainly
interested in measurements which indicate an algorithm’s running time and its
space requirements. Useful quantities to measure for this information include
the number of comparisons, data accesses, assignments, or exchanges an algo-
rithm might make. When looking at space requirements, we might consider
the number of words, records, or pointers involved in an implementation.
Time complexity covers a much broader range of measurements. For exam-
ple, in our examination of searching algorithms, we might be able to attach

8770103




2 HANDBOOK OF AL GOR!THMS AND DATA STRUCTURES

meaningful interpretations 1o most of the combinations of the

query
. / . .
( average } . Cumparisons add a record into
| variance I accesses delete a record from
1 MR S L pumiee o ‘! assignments { when we § modify a record of L
WSt e § I cuchanges reorganize
\1\; ,' L:'ur-ction callsJ build
read sequentially

the siruciure.  Other theoret:cal results may also be presented, such as
enwineratows, generating functions, or behaviour of the algorithm when the
daty elements are distributed according (o special distributions.

(3} The Algorithm. We¢ have selected Pascal and C o describe the
algorithms.  Algorithms that mav be used in practice are described in one cr
buth of these lunguages. For aigorithms which are only of theoretical intcrest,
we du not provide their vode.  Algorithms which are coded both in Pascal and
in C will have one code with the algorithm and the other in appendix IV.

(4) Recommendations. Following the algorithm description we give
several hints and tips on how io use the algorithm. We point out pitfalls to
avord in coding, suggest when to use the algorithm and when not to, tell when
to expect best and worst performances, and provide a variety of other com-
ments. l . ’

{3) Tables. Whenever possible. we present tables which show exact
values of complexity measurcs in selected cases. These are intended to give a
feeling for how the algorithny behaves. When precise theoretical results are
not available we give simulation results, gencerally in the form xxx % yy where
the value y3 is chosen so that the resulting interval has a confidence level of
953%. In other words, the sctual value of the complexity measure falls out of
the given interval only once every twenty simulations.

(6) Differences between internal and external storage. Some algo-
. tithms may perform better for internal storage than external, or vice versa.
When this is true, we wiil gsve recommendations for applications in the two
different cases. Since mo:: of our.analysis up to this point implicitly assumes
that internal memory is uscd. in this section we will look more closely at the
external case (if appropriate). We analyze the algorithm’s behaviour when
working with ¢xternali storuge, and discuss any significant practical considera-
ons in mmg the algorithm externally.

"} With the descri; otion of each algorithm we include a list of relevant
ucl"c:unu General references. surveys. oi tutorials are collected at the end
of chiuprers or sections. The second appendix contains an alphabetical list of
Al relerences with cross-references to the relevant aigorithrus.

~
o
P
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INTRODUCTION 3

1.2 Naming of variables

The naming of variables throughout this handbook is a compromise between
uniformity of notation and accepted terminology in the specific areas.

Except for very few exceptions, explicitly noted, we use:

n for the number of objects or elements or components in a structure;

m for the sizc of a structure; ‘

b for bucket sizes, or maximum number of elements in a physical block:

d for the digital cardinality or size of the alphabet.

The complexity measures are also named unifermly throughout the hand-
book. Complexity measures are named XZ and should be read as “the
number of X’s performed while doing Z onto a structure of size n”.

Typical values for X aré:

A accesses, probes or node inspections;

C': comparisons or node inspections;

E: external accesses;

Ah: height of a recursive structure (typically a tree);

1. iterations (or number of function calls);

L: length (of path or longest probe sequence);

M : moves or assignments (usually related to record or kev movements),
Typical values for Z are:

null (no superscript): successful search (or default operation, when there
is only one possibility);

C': construction (building) of structure;

D: deletion of an element;

E: extraction of an element {mostly for priority queues);

1. insertion of a new element;

M merging of structures;

Opt: optimal construction or optimal structure (the operation is usually
implicit); .

MM minimax, or minimum number of X’s in the worst case: this is usu-
ally used to give upper and lower bounds on the complexity of a problem.
Note that X! means number of operations done to insert an element into a
structure of size n or to insert the n+ 1% element.

Although these measures are random variables (as these depend on the
particular structure on which they are measured). we will make exceptions for
C, and C, which most of the literaturz considers to be expected values.

1.3 Probabilities

The probability of a given event is denoted by Pr{event}. Random variables
follow the convention described in the preceding section. The expected value
of a random variable X is written E[X] and its variance is 6%(X). In particu-
lar, for discrete variables X

E[X] = SiPr{x=i}
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odX) = Yi*Prix=i}—EX]* = E[X]—-E[X}

We will always make explicit the probability universe on which expected
values are computed. This is ambiguous in some cases, and is a ubiquitous
problem with expected values.

To illustrate the problem without trying to confuse the reader, suppose
that we fill a hashing table with keys and then we want to know about the

“average number of accesses to retrieve one of the keys. We have two poten-

tial probability universes: the key selected: for retrieval (the one inserted first,
the one inserted second; etc.) and the actual values of the keys, or their prob-
ing sequence. We can compute expected values with respect to the first, the
second, or both universes. In simpler terms, we can find the expected value -
of any key for a given file, or the expected value of a given key for any file,
or the expected value of any key for any file.

Unless otherwise stated, (i) the distribution of our elements is always ran-
domt independent uniform U(0,1); (ii) the selection of a given element is uni-
form discrete between afl possible elements; (iii) expected values which relate
to multiple universes are computed with respect to all universes. In terms of
the above example, we will compute expected values with respect to randomly
selected variables drawn from a uniform U(0,1) distribution.

1.4 Asymptotic notation

. ) . /. .
Most of the complexity measures in this handbook are asymptotic in the size
of the problem. The asymptotic notation we will use is fairly standard and is
given below:

f(n) = 0(g(n)
implies that there exists k and nq such that | f ('{)J < kg(n) for n>nq

Sf(n)

f(n) = B(g(n)

iniplies that there exists k;k; (k;Xky;>0) and ny such that
kig(n) < f(n) < kog(n) for n>ny, or equivalently that f(n) = O(f(n))
and g(n) = O(f(n)).

S(n) = Qg(n) — gln) = 0(f(n)
f(n) = o(gn)) — gn) = o(f(n)
f(1) = gn) — fln)—gn) = o(g(m)
We will freely use arithmetic operations with the order notation, e.g.

f(n) = h(n)+0(gn))

I

BT A ()
o(g(n)) _,.lingog(n) 40

means
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fn)—h@n) = O(g(n))

Whenever we write f(n) = O(g(n)) it is with the understandmg that we
know of no better asymptotic bound, i.e. we know of ro h(n) = o(g(n)) such
that f(n) = O(h(#)).

1.5 About the programming languages

We use two languages to code our algorithms: Pascal and C. After writing
many algorithms we still find situations for which these languages do not
present a very “clean” or understandable code. Therefore, whenever possible,
we use the language which presents the shortest and mlost readable code. We
intentionally ailow our Pascal and C style of coding to resemble each other.

A minimal number of Pascal programmes contain goto statements.
These statements were used in place of the equivalent C statements return
and break, and are correspondingly so commented. Indeed we view their
absence from Pascal as a shortcoming of the language. Another irritant in
coding some algorithms in Pascal is the lack of order in the evaluation of logi-
cal expressions. This is unfortunate since such a feature makes algorithms
easier to understand. The typical stumbling block is

while ( p # nil ) and ( key # pl.key ) do ....

Such a statement works in C if we use the sequential ard operator (&&), but
for Pascal we have to use instead:

while p # nil do begin
if key = pl.k then goto 999 {x x » break i x x}.

ss s

999:

L]

Other minor objections are: the inability to compute addresses of non-
heap objects in Pascal (which makes treatment of lists more difficult); the
lack of a with statement in C and the lack of var parameters in C. (Although
this is technically possible to overcome, it obscures the algorithms.) .

Our Pascal code conforms, as fully as possxble, to the language described
in Pascal User Manual and Report by K. Jensen and N. Wirth. The C code
conforms to the language described in The C Programming Language by
B.W. Kernighan and D.M. Ritchie.

e e — SRR ———
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1.6 On the code for the algorithms

Except for very few algorithms which are obviously written in pseudo-code,
the algorithms in this handbook were run and tested under two different com-
pilers. Actually the same text which is printed is used for compiling, for test-
ing, for running simulations and for obtaining timings. This was done in an
attempt to eliminate (or at least drastically reduce!) errors.

Each family of algorithms has a “tester set” which not only checks for
correct behaviour of the algorithm, but also checks proper handling of limit-
ing conditions (will a sorting routine sort a null file? one with one element?
one with all equal keys? etc.).

In most cases the algorithms are described as a function or a procedure
or a small set of functions or procedures. In a few cases, for very simple algo-
fithms, the code is described as in-line code, which could be encapsulated in a
‘procedure or could be inserted into some other piece of code.

Some algorithms, most notably the searching algorithms, are building
blocks or components of other algorithms or programmes. Some standard
actions should not be specified for the algorithm itself, but rather will be
specified once that the ‘algorithm is “composed” with other parts (chapter 2
defines composition in more detail). A typical example of a standard action is
an-error condition. The algorithms coded for this handbook use always the
same names for these standard actions.

Error detection of an unexpected condition during execution. Whenever
Error is encountered it can be substituted by any block of statements. For
example our testers print an appropriate message.

found{ record } function call that is executed upon completion of a suc-
cessful search. Its argument is a record or a pointer to a record which con-
tains the searched key.

notfound( key ) function called upon an unsuccessful search. Its argu-
ment is the key which was not found.

A special effort has been made to avoid duplication of these standard
actions for identical conditions. This makes it easier to substitute blocks of
¢ode for these.

1.7 Complexity measures and real timings

For some families of algorithms we include a comparison of real timings.
These timings are to be interpreted with caution as they reflect only one sam-
ple point in the many dimensions of hardwares, compilers, operating systems,
etc. Yet we have equally powerful reasons to present at least one set of real
complexities.
The main reasons for mcludmg real timing comparisons are:
) these take into account the actual cost of operations,
(i) these take into account hidden costs, like storage allocation, indexing,
elc.
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The main objections, or the factors which may invalidate these real. tim-
ing tables, are:

(1) the results are compiler dependent: although the same compiler is used
for each language, a compiler may favour some construct over others;

(ii)  the results are hardware dependent,

(iii) in some cases, when large amounts of memory are used, the timings
may be load dependent. *

The timings were done on a VAX 11/780 running the Berkeley Unix 4.1
operatin§ system. Both C and Pascal compilers were run with the optimizer,
or object code improver, to obtain the best implementation for the algorithms.

There were no attempts made to compare timings across languages. All
the timing results are computed reiative to the fastest algorithm. To avoid
the incidence of start up costs, loading, etc. the tests were run on problems of
significant size. Under these circumstances, some O(n?) algorithms appear to

perform very poorly.



Chapter2: BASIC CONCEPTS

2.1 Data structure description

The formal description of data structure implementations is similar to the for-
mal description of programming languages. In defining a programmmg
language, one typically begins by presenting a syntax for valid programmes in
the form of a grammar and then sets further validity restrictions (e.g., usage
-rules for symbolic names) which give constraints that are not captured by the
grammar. Similarly, a valid data structure implementation will be one that
satisfies a syntactic érammar and also obeys certain constraints. For example,
for a particular data structure to be a valid weight balanced binary tree, it
must satisfy the grammatical rules for binary trees and it must also satisfy a
specific balancing constraint. -

2.1.1 Grammar for data objects
A sequence of real numbers can be defined by the BNF production
<S> = [real, <S> } | nil
Thus a sequence of reals can have the form nil, [real,nil], [real,[real,nil}], and
so on. Similarly, sequences of integers, characters, strings, boolean constants,
etc. could be defined. However, this would result in a bulky collection of pro-
duction rules which are all very much alike. One might first try to cllmmatc
this repetitiveness by defining
<8> = [ <D>, <S> ] | nil
where <D> is given as the list of data types
<D> ::=real | int | bool | string | char °

However, this pair of productions generates unwanted sequences such as

{real,[int,nil]]
as well as the homogeneous sequences desired.

To overcome this problem, the syntax of a data object class can be
defined using a W-grammar (also called a two-level or van Wijngaarden
grammar). Actually the full capabilities of W-grammars will not be utilized;
rather the syntax will 'be defined using the equivalent of standard BNF pro-
ductions together with the uniform replacement rule as described below.

A W.grammar generates a language in two steps (levels). In the first
step, a collection of generalized rules is used to create more specific produc-
tion rules. In the second step, the production rules generated in the first step
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are used to define the actual data structures.

First, the problem of listing repetitive production rules is solved by start-
ing out with generalized rule-forms known as hyperrules, rather than the
rules themselves. The generalized form of a sequence S is given by the
hyperrule

s—D:[D, s—DJ; nil

The set of possible substitutions for D are now defined in a métaproduction,
as distinguished from a conventnonal BNF-type production. For example, if D
is given as

D :: real; int; bool; string; char; - - -
a seguence of real numbers is defined in two steps as follows. The first step
consists of choosing a value to substitute for D from the list of possibilities
given by the appropriate metaproduction; in this instance, D — real. Next

invoke the uniform replacement rule to substitute the string real for D every-
where it appears in the hyperrule that defines s—D. This substitution gives

s—real : [real , s—real] ; nil

Thus the joint use of the metaproduction and the hyperrule generates an ordi-
nary BNF-like production defining real sequences. The same two statements
can generate a production rule for sequences of any other valid data type
(integer, character, etc.).

Figures 2.1 and 2.2 contain a W-grammar which will generate many con-
ventional data objects. As further examples of the use of this grammar, con-
sider the generation of a binary tree of real numbers. With D—real and
LEAF—nil, HR[3} generates the production rule

bt—real—nil ; [ real , bt—real—nil , bt—real—nil |; nil

Since bt—real—nil is one of the legitimate values for D according to M[1] let
D—bt—real —nil from which HR[1] mdxca'cs that such a binary tree is a leg-
itimate data structure.

. Secondly .consider the specification for a hash table to.be used with
direct chaining. The production

s—(string,int) : [ (string,int) , s —(string,int) ] ; nil
and M[1] yield
D — {s—(string,int)}q°

Thus HR[1} will yield a production for an array of sequences of
string/integer pairs usable, for example, to record NAME/ AGE entries using
hashing. .

Finally consider a productlon rule for structures to contain B-trees of
strings using HR[4] and the appropriate metaproductions to yield
"

mt—10— strmg nil : [int,{string} |°, { mt — 10— string —nil} nil
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Metaproductions:

- M([1]

D :: real;int;bool;string;char;...;
{D}4;
REC ; (REC);

# atomic data types

# array «
# record

# reference

# sequence

# general tree

# dictionary structures

# other structure classes

E.g. graphs, sets,

priority queues.

M[2] DICT - {KEY}R; s—KEY; # sequential search
bt—KEY—LEAF; # binary tree
mt—N—KEY—LEAF; # multi-way tree
tr—N—KEY. # trie

. M[3] REC :: D; D, REC, # record definition

M[4]  LEAF = nil; D.

M[5]  N: DIGIT; DIGIT N.

Mi6] DIGIT :: 0;1;2;3;4;5:6;7:8:9.

M(7] KEY :: reakint;string;char(KEY,REC). # search key

Fi.gure 2.1: Metaproductions for data objects
Hyperrules:

HR[1] . .data structure : D.

HR([2] s—D: [D,s—D];nil

HR][3] bt—D—LEAF : [ D,bt—D—LEAF,bt —D—LEAF | ; LEAF.

HR[4] mt—N—D-—LEAF: [int, {D}V, {mt—N—D-—LEAF}}] ; LEAF.

HR[5] gt—D—LEAF : { D,s—gt—D—LEAF | ; LEAF.

HR[6] tr—N-D: [ { «—=N—-D }} |;[D]; nil.

Figure 2.2: Hyperrules for data objects

In this multitree, each node contains ten keys and has eleven descendants.
Certain restrictions on B-trees, however, are not included in this description
“(that the number of actual keys is to be stored in the int field in each node,
that this number must be between 5 and 10, that the actual keys will be
stored contiguously in the keys-array starting at position 1, etc.); these will |



