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CLASSICAL OPTIMIZATION

ORIGINS OF OPTIMIZATION

The concept of the optimum (greatest or least) value of a mathematical
function is one that was formulated in a precise way rather late in the history of
mathematics. However, its origins are steeped in antiquity.

Virgil tells us of the founding of the city of Carthage by Queen Dido, who was
allowed to have the largest area of land that could be surrounded by the hide of a
bull. Queen Dido prepared a rope of unspecified thickness (a nontrivial detail
omitted in Virgil) and then, perhaps guided by the gods, hit upon the optimal
solution. With the sea as a diameter, she arranged the rope of finite length in the
form of a semicircle. Indeed, this half-circle has the largest possible area for a
fixed perimeter. Archimedes (287-212 B.C.) conjectured, but did not prove, that
this was the correct solution. This was not proven until the development of the
calculus of variations in the nineteenth century.

A great deal of thought about maximization and minimization is found in some
of the work of the ancient Greek geometers. For example, in Book V of his
treatise on Conic Sections, Appolonius (ca. 262-190 B.C.) deals with the -
problem on the maximum and minimum lengths that can be drawn from various
points to a conic section. In work of great originality, he investigated maximum
and minimum length distances for certain points on the major axis of a central
conic or on the axis of a parabola. He does the same for points on the minor axis
of an ellipse. He also proved that a line from a point within a conic to a point on
the conic which is a maximum or minimum is perpendicular to a tangent line
through the pomt a result of great significance. In short, he proved that the
maximum and minimum lines to the point are normal to a thngent at the point of
tangency.

Intuitively, the solution to another geometric optimization problem has been
known for a long time, viz., that the shortest distance between two points on a
plane is a straight line. The early Greeks used this principle in thinking about the
behavior of light. Heron of Alexandria thought of light traveling between two
points by the shortest path. Later Fermat, in the seventeenth century, formu-
lated a principle of least time which generalized the earlier principle. Virtually all
the principles of classical mechanics and optics down to the present day in wave
mechanics have been or can be formulated in terms of various minimum

principles.
~ The creation of the calculus, which led to the existence of the subject of this
article, was, at least in part, motivated by the problem of finding the maximum
or minimum value of a function. If a cannonball is shot from a cannon, the
distance it will travel horizontally (the range) depends on the angle of inclination
of the cannon to the ground. An early problem was to find the angle that would
maximize the range. In the seventeenth century, Galileo determined that the

(1]
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maximum range (in a vacuum) is obtained for an angle of inclination of 45°. He
was also able to determine the maximum heights reached by projectiles for
various angles. Another early scientific influence on the development of the
calculus was the study of the motion of the planets. Problems of optimization
were involved in such determinations as the greatest and least distances of a
planet from the sun.

Again the pervasive influence of geometry in leading to the development of
calculus, one of the two greatest mathematical developments of all time, and
hence to classical analysis, should be noted. Kepler made an early and crucial
observation in his Stereometria Doliorum in 1615. He was interested in the
optimal shape of casks for wine. He showed that, of all right parallelepipeds
inscribed in a sphere and having square bases, the cube is the largest, He
proceeded by calculating the volume for.various choices of the dimensions. He
then made an exceedingly 1mportant observation, viz., that as the maximum
volume was approached, the change in volume for a fi xed change in dimensions
grew smaller and smaller. In the language of the calculus, the first denvanve
approached zero.

In a similar vein, Fermat, in his Methodus ad stqmrendam Maxzmam and
Minimam in-1637, gave his ‘method for finding maxima and minima by using the
following as an example. Given a straight line segment, it is réquired to find a
point on the line segment such that the rectangle contained by the two segments
is a maximum. If the length of the whole line segment is L and the point marks
off a part of length P, then the rectangle has area P(L — P) = PL — P*. Fermat
" then replaces P by P + E. The remaining part is L — (P + E) and the rectangular
area is now (P + E)(L — P — E). He then maintains, indicating complete insight
into the principles we now understand that the two areas should be equated,
resulting in

PL+EL‘—P“—2EP~—E‘=PL-P‘ )
He then subtracts PL — P2 from both sides and divides by E to obtain
L=2P+E ' 2

He then argues that E = 0 at a maximum and so obtains L = 2P. Therefore, the
rectangle is a square. He also generalizes the argument for any function, but of
course does not justify dividing by E and setting E to zero.

It is interesting to note that at least one of the influences that led to the
development of the calculus was the problem of finding the maxima and minima
of a function. In turn, the calculus became a splendid instrument for examining
such problems in a general settmg This is the subject matter of this article.

MATHEMATICAL BACKGROUND

We present here some of the mathematical concepts, either as definitions or
theorems, that are required for the subsequent dlscussmn For proofs of the



{31

CLASSICAL OPTIMIZATION

theorems that are omitted, the reader may consult Apostol’s Mathematical
Analysis [1].

Classical optimization theory is restricted to a consideration of finding maxima

and minima of continuous and differentiable functions. Hence we need to define
these terms.

Continuity. A function of n variables x,, x,, . . . , x, is continuous at the point
= (x,° %% ..., x?) if for every € > 0 there exists a set of corresponding §,, j
=1,2,...,nsuch thatfor |h| < §;,j=1,2,...,nand §>0,j=1,2,...,n
If(xlo+h‘l’x2o+h1’ v ’xno + h'n) —f(xlo:xzo" .. ’&o)is‘e (3)

In vector notation we would write (3) as: ’ .
|f&® +h) — f&x)| < e (C))

That not all functions are continuous should be obvious to the reader. For
example, the.function :

—os x<(
0=x=<4 )

-

fx) =

, 4=x=sw

NIk & O

is an example of a discontinuous function of one-variable.

Differentiability. A function f(*) of n variables is differentiable at a point x° if the
derivative of f(-) with respect to each of the independent variables exists. The
derivative with respect to each variable is defined as:

afa(:) _ ’!’mﬂxﬂ, %% ..., x° +hjh,, 50 - fX) Gl ©

(The notation df(x®)/dx; indicates the derivative evaluated at the point x°. This is
sometimes noted as 9f(x)/9xly=y.)

A function may be continuous without being differentiable. For example, f(x)
= x*2 has no derivative at the point x = 0.

Absolute (Global) Maximum. A function f(-) takes on its absolute (or global)
maximum at a point x* if f (x) = f(x*) for all values of x over which the function f
is defined. We will assume, in order to rule out certain anomalous cases, that the
values of x at which f(-) attains its maximum are actually in the set of values
over which x is defined.

The definition of absolute (or global) minimum can be obtained from the
preceding definition by reversing the sense of the inequality between f(x) and
f(x*). For example, the function f(x;, x,) = 2x,2 + 3x> — 8x; — 12x, + 40 has a

! The boldface quantities such as.x are to be regarded as points in an #-dimensional Euclidean space
or simply as n-component vectors.
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X2

Fig. 1. Local and global maxima.

e

global n’ﬁnimum at x* = (2, 2). We will see, subsequently, how this can be
established. ' '

Strong Relative (or Local) Maximum. A function f(-) takes on a strong relative
(or local) maximum at a pomt x? if there exists an €, 0 < € < §, such that for all x
satisfying 0 < [x — x°|| <'e, it is the case that f(x) < f(x°).

In geometric language, the above definition states that if a function f(-) has a
strong local maximum at some point x° in an n-dimensional Euclidean space E", .
then there is a hypersphere (neighborhood) about x° of radius €, such that for
every point x in the interior of the hypersphere f(x) is strictly less than f(x%). A
strong relative minimum is defined by reversing the mequahty between f(x) and
f(x°) in the preceding definition.

Weak Relative (or Local) Maximum. A function f(-) takes on a weak relative (or
local) maximum at a point x° if there exists an €, 0 < € < §, such that for all x
satisfying 0 < |x — x%| < ¢, it is the case that f(x) < f(x°) and there is at least one
point x in the interior of the hypersphere Jx — x%| < € such that f(x) = f(x°).

In general, we will not distinguish between strong and weak local maxima.
They will simply be called local maxima. It should be clear that a weak relative
(or local) minimum is defined by reversing the inequality between f(x) and f(x%)
in the preceding definition. '

In connection with the definition of maxima and minima, it should be noted
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that if f(-) has an absolute maximum at a point x*, then —f(-) has an absolute.
minimum at x*, and vice versa. Similarly, if () has an absolute maximum at a
~ point x°, then —f(-) has an absolute minimum at x°, and vice versa.

In Fig. 1 we have shown graphically a function z = f(x) = f(x;, x,). What is
plotted are the contours of z in the two-dimensional plane, E?. At the points
marked A and B, two relative maxima are shown. Assuming that f(x;, x,) goes to
—% as x;, X, — ©, we see that the point B is also the global maximum.

Convex and Concave Functions. A -function f(-) is convex over some convex set
X in E" if for any two points x, and x, in X and for all A, 0 = A = 1, fTAx, + (1 —
Mxo] = M(x) + (I = N f(xy). I fIAx, + (1 — Mxe] = Af(x;) + (1 — A) f(xp), thert
_the function is concave. If in the aforementioned expressions the inequalities are
strict, then the function f() is said to be strictly convex in the first case and
strictly concave in the second.

Consider the example of Fig. 2. The function f(:) is defined over the convex
set X equal to the real line. Any point on’ the curve of f(-) between x, and x, is
equal to fTAx, + (1 = Mx] for0 < X =< 1, M (x; + (1 — N)f(x,) will be a point on
the straight line segment shown in Fig. 2. Hence a convex function is one that
lies on or below a line segment drawn between two points on its curve. In
general, a function z = f(x) is a hypersurface in n-dimensional space. It is
convex if the line segment which connects any two points [x;, z,] and [x;, 2] on
the surface of f(x) lies entirely on or above the hypersurface. The reverse holds
true for concave functions.

We will now state without proof some important results which relate to the
use of convex and concave functions. Proofs of these theorems can be found in
Ref. 2.

Theorem 1. Let the functions L), k=1,2, ..., p be convex (concave)
functions over some convex set? X in E". Then the function
f&x) = 2£., fi(x) is also a convex (concave) function over X.

Theorem 1 says that the sum of convex functions is a convex function and the
sum of concave functions is a concave function.

. Theorem 2. If f(:) is é‘con\;ex function over the nonnegative orthant of E",
then if W = {x | f(x) = b, x = 0} is not empty, W is a convex set.

We will now state some general mathematical results from the calculus for
purposes of reference subsequently. Proofs of these results can be found in Ref.
1. ‘

2 A convex set is one such that a straight line between any two points in the set is also in the set.
More precisely, for any two points x, and x, in the set, the convex combination, Ax; + (1 — A)x;, 0 =
A = 1, is also in the set.
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fx

|

pe e o . - —

X = -
x
nN
x

Fig. 2. A convex function.

Theorem 3  (Mean Value Theorem). If f(-) is continuous in the closed interval
X, = x < x, + h and differentiable at every point in the open
interval x, < x < x, + h, then there exists at least one point x,, in
the open interval specified where

foot =10 _pe .

By f ’()?m) we mean df (x)/dx |;-z,

_The point x, is not specified by this theorem. Its existence is merely guaranteed.
An alternative way of expressing this theorem is to write:

flxo + h}: — fx) =f'xp +6h), 0<6<]I ®)

This follows from the fact that x,, lies in the open interval (x,, X, + ) and any x
in this interval can be expressed as x = x, + 6k where 0 < 0 < 1. Therefore x,, =
X, + 6h from which (8) follows.

A result which is often of interest and use for functions of a single variable but
which is not easily generalized for functions of more than one variable is the
following. It gives.a necessary and suyfficient condition for a function to have a
maximum or minimum at a point and includes the case where the derivative may
not exist at the maximal or minimal point—hence its value.

Theorem 4. Given a function f(-) defined on an interval, containing a point x,
and that f(-) is. continuously differentiable everywhere in the
interval (with the possible exception of x,) and further that f'(:)
vanishes at a finite number of points. Then f(-) has a maximum or
minimum at X, if and only if the point x, divides the interval over
which f(-) is defined into-two subintervals in which f'(-) has
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different signs. More precisely, the function has a maximum if the
derivative is positive to the left of x, and negative to the right. It
has a minimum if the reverse holds.

In Fig. 3 we see a function which has a minimum at a point x,, for which the
derivative is not defined at x,. The theorem, of course, is still true if the
derivative is defined everywhere. .

One of the most important results in analysis, and of major significance in
optimization, is what is known as Taylor’s theorem. We shall give the theorem
in its multidimensional form. In order to do so we shall require some special
notation. Let

n n n a]f(x)
D‘ = e N vee — 9)
(%) 2 2 ; e e T (
n 1 i
Sv(x) = X = Df(x) (10)
i=1J%4
Furthér, let x, = x; + h, where h = (h, h,, . . ., h,). Then we define a function,
usually called the remainder term, as
1 ' o
+ =———— DV*If(x + <6<
Ry(x + 6h) N+ 1)!D"’ 'f(x + 6h), 0<6<1 (11)

We now state Taylor’s theorem.

Theorem 5  (Taylor’s Theorem). A function (-) which is continuous and which
has continuous partial derivatives of required order may be
represented at point x, = x, + h in terms of its value at a point x,
by

fx) = f(x;) + Sy(x) + Ry(x; + 6h), 12)

f(x)

Kb w

Fig. 3. Nondifferentiable maximum.
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"In particular, a value of 0 < 6 < 1 exists to make (12) hold true. In simple
laniguage what Taylor’s theorem states is that we may approximate any given
function f(-) by polynomial of order N if the first N + 1 partial derivatives of the
function are continuous. The two most commonly used forms of Taylor’s
theorem, which we shall use subsequently, are as follows.

fx) = f(x)) + Vf[6x + (1 — O)x]h 13)
f&x) = f(x;) + Vf(x)h + $h'H[6x, + (1 — 6)x,]h (14)
Equation (13) is a first-order approximation and Vf is the grédient vector and is
defined by
) _ (¥ o "_f>
f - Vf (axl’ax,""’ax,. (15)

The notation Vf[6x, + (1 — 0)x,] indicates that the gradient vector is to be
ev?luated at the point x = 6x, + (1 — 6)x, in E*. Taylor’s theorem assures us that
there exists a @ such that (13) holds.

In Eq. (14) we have written the theorem in terms of second partial derivatives
as well as first partial derivatives. H in Eq. (14) is the Hessian matrix of f(-) and
is defined as a matrix of the n? second partial derivatives of f(-). In other words,

itisthe n X n matrix H = [|6%f/dx,dx,|| where u, v =1, 2, . . ., n. The notation
CH{6x, + (1 — 0)x,] indicates that the Hessian matrix is evaluated at the point x =
0x1 + (1 O)X2

We require one last result from analysis. It is known as the implicit funct:on
theorem. Consider a set of m equations in n variables where m < n:

&(x) =0, i=1,2,...,m
and (16)

x=(x|,x2v""xn)

There may be situations in which we may wish to use these m equations to
eliminate some subset m of the n variables in some expression. Suppose we wish
to do this at some specific point x°. Without loss of generality, suppose we wish
to eliminate the first m variables. Therefore, what we would like to know is
under ‘what circumstances there exist a set of m functlons d,i=1,2,...,m,
such that

X = O (Xmsts Xmazs -+ + » Xn)s i=12...,m - an
at x° or in a neighborhood of x°. The following theorem supplies this information.

Theorem 6  (Implicit Function Theorem). If the rank of the Jacobian matrix J,,
evaluated at the point x° is equal to m, then this is a necessary and
sufficient condition for the existence of a set of m functions ¢, i =
1, 2, . , m, which are unique, continuous, and dlfferentlable in
some nelghborhood of x
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The Jacobian matrix J, is defined as

[ & %8
ix;, Ox, 0x,
0% 98 08, : :
g, =| 22 2z .. =2
"o oy ax Xy . (18)
%m 98m . O8m
L 0x; Ox, 9x,, -

The statement that the Jacobian matrix is evaluated at x, means that each of the
elements of J,, is evaluated at the point x,.

For simplicity in the statement of Theorem 6 we assumed that the first m
variables were to be expressed in terms of the remaining n — m variables. A
more exact statement is as follows. If one selects any m column vectors of the
form :

%8
ax;
3
ox;

98m

Bx,

Then, if the resulting Jacobian matrix has rank m, these particular variables may
be eliminated, i.e., the required set of m functions ¢ exist. There
are (") = n!/m!(n — m)! possible combinations of m columns out of a total set
of n and hence that number of Jacobians. Every Jacobian that has rank m
“represents a set of variables that can be eliminated. An equivalént statement to
having rank m is that the Jacobian matrix be nonsmgular, i.e., that its
determinant is not zero.

UNCONSTRAINED OPTIMIZATION

We shall divide the subject of unconstrained dptimization, i.e., maximizing or
minimizing a function under conditions where the variables are not constrained
in any way, into two major parts. The first is the study of functions of a single
variable and the second treats functions of several variables.

There are two basic approaches that one can take to find the optimum of a
_function. The first approach, which is often called a direct method, consists of
evaluating the given function f(-) at some point x*and then seeking, by some
method, to find another point x*, where x* = g(x'), some well-defined function
of x!, such that f(x?) > f(x!) if we seek a maximum or f(x?) < f(x') if we seek a
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minimum. We repeat this process until no further change is possible. We shall
not be concerned with this general approach in this article.

The second approach is what is referred to'as an indirect method and is the
approach of calculus and classical optimization. What is involved here is the
development and use of necessary and sufficient conditions that an optimal
point, a local maximum or minimum, must satisfy. In certain cases it is possible
to determine whether or not a global optimum has been found.

We first consider the derivation and proof of a necessary condition for the
* existence of a local or relative optimum of a function. This is provided in the
following theorem.

Theorem 7. A necessary condition that a continuous functlon f¢), whose first
derivative is continuous over E!, has a local minimum or maxr-
mum at a point x, is that df(x,)/dx =

Proof: We recall from the definition that if. f(-) has a relative minimum at a
point x,, then there exists an € > 0 such that for some interval about x,, f x) =
f(xo) for |x — x| < €. Therefore, let us consider points about x, of the form

x=xy+ h, 0<|h<e

Then we may write

- fxo + h) — f(x) =0, 0<|p<e€ ' (19
We may then dmde Bq (19) by h to obtain © o e C e
S (L. EOS@ g hso P
T f(x°+ ’2 B A A N )
If we take the limit of the ex‘p’ressions in (20) and (21j, we vobtain
G )~ fG) _dfte) | o o
h—0 h o dx. - C N s .
lim S + h) — f&) _ dfta) _ 0 23)
h—>0 h ) ,dx,,

Together, Eqs. (22) and (23) imply that R

M': 0 o (24
A con:espondmg argument wnth the mequalmes reversed can be made for a
relative maximum, Hence the theorem is proved.

 *A_peint. at, which. the. first, derivative is zero rs'called a stanonary pomt
Therefore, we have proven that a necessary condition for x, to be a local
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maximum or minimum is that x, be a stationary point. Since Theorem 7 provides
only a necessary condition, a stationary point may be either a maximum, a
minimum, or neither. The following obvious examples illustrate this:

filx) = 4x? has a minimum
Lx) = =3x® has a maximum
Lilx) = 728 has neither a maximum nor a minimum

In order to discriminate between maxima and minima and other stationary
points we require a sufficient condition. This is provided by the following
theorem. : :

Theorem 8. Given a continuous function f(-) whose first two derivatives are
continuous at x,. Then if f'(x,) = 0, a sufficient condition for f(:)
to have a minimum at x, is that f"(x,) > 0 and a sufficient
condition for f(-) to have a maximum at x, is that f"(x,) < 0.

Proof: Using Taylor’s theorem we may write
. R
flxo + h) = flx) + Af' (%) + 5 0% + (1 -60)x +h], 0=6=1 (25

If £(-) has a relative minimum at x,, then we know from Theorem 7 that f'(x,) =
0. Therefore we may rewrite Eq. (25) as

hZ
flo + h) = flx) = 7f”[9xo +(1 -6 +h], 0=6=<I1 (26)
If £(-) is to have a minimum at x,, then it follows from Eq. (26) that
h2
flxo + h) — flxo) = 7f"[0xo + (1 =-0x+mn]>0 0=06=<1 (27

-Suppose that f"(x,) < 0. Then it follows from the continuity of the second
derivative that f"[6x, + (1 — 6)(x, + h)] < 0 and therefore that

Floko + ) = fla) = 5 f@x, + (1 = B)x + W) <0 28)

and therefore x;, cannot be a minimum point. Conversely, if f"(x,) > 0 at f'(x,) =
0, f(x,) is clearly a minimum. We can repeat a corresponding argument for the
case of a maximum and arrive at the conclusion that if f"(x,) < 0 at f'(x,) = 0,
f(x) is a maximum. '

While Theorem 8 gives sufficient conditions for functions for which the
second derivative does not vanish, it is certainly possible that at some point x,,
both first and second derivatives will vanish. The following theorem is more
general and gives sufficient conditions for any case.

Theorem 9.  Assume that f(-) and its first # derivatives are continuous. Then



