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Proceedings of Symposia in Pure Mathematics
Volume 45 (1986), Part 2

Remarks on the Euler
and Navier-Stokes Equations in R’

TOSIO KATO!

Abstract. We consider the Euler and the Navier-Stokes equations in R? for an incom-
pressible fluid. It is shown that the solution u(r) € H*(R®) exists for all time if
u(0) € H*(R?) with div u(0) = 0, where s is any real number such that s > 2. Moreover,
the Navier-Stokes flow converges in C([0, T'); H*) to the Euler flow as the viscosity tends
to zero for each T > 0.

1. Introduction. Consider the Navier—Stokes equation in space domain R?:
(NS) Odu-rvAu+(u-3)u+dp=0, divu=0,120,x<cR?

where 9, = 9/81, 8 = grad = (8/0x,;,0/0x,), u = u(t, x) = (u,(1, x), u,(t, x)) is
the velocity field, p = p(, x) is the pressure, and » > 0 is the kinematic viscosity.
For simplicity we assume that there is no extremal force, but the following results
can be extended to include external forces satisfying appropriate conditions.

In the limit v — 0, (NS) formally goes over to the Euler equation

(E) du+(u-du+dp=0, divu=0.

It is well known that these equations have global solutions for appropriate initial
velocities. For (NS) it suffices that #(0) € L?, and for (E) that u(0) € C!** with
some decay at infinity. (We usually suppress the space variable x and write
u = u(?). Also L? means L%(R?), etc., unless otherwise indicated.)

In these equations the pressure p is automatically determined (up to a function
of ¢) if u is known; indeed, dp = —(1 — P)u - )u, where P is the orthogonal
projection of L? onto the subspace of solenoidal vectors. For this reason it
suffices to consider u only when we talk about the solution of (NS) or (E).

1980 Mathematics Subject Classtfication. Primary 35Q10, 76D05.
!Partially supported by NSF Grant MCS-82-00171.

© 1986 American Mathematical Society
D082-0717/86 $1.00 + $.25 per page



2 TOSIO KATO

In what follows we are interested in the conditions under which the solutions
u = u” of (NS) are uniformly bounded as » — 0 in a certain norm and u” — u°
holds as v — 0, where u® is a solution of (E). Our main results are given by the
following theorems.

THEOREM 1. Let 5 > 2 (not necessarily an integer), and let a*, a° € H* with
a" — a%in H* as v > 0. Then there are unique solutions u” and u® to (NS) and (E),
respectively, both in C([0,00); H®) satisfying the initial conditions u"(0) = a’,
u®(0) = a®. Moreover, we have u* - u® in C({0, T}, H*) as x — O for any T > 0.

COROLLARY. For any T > 0, the u” are uniformly bounded in C({0, T];, H*).

The novelty of these results is in the small value of s permitted. For larger s
such results have long been known. Golovkin {2] and McGrath {7} deduced
similar results assuming, roughly, that a” = a® € H* and proving the convergence
in C!(f0, T] X R?). (These authors were mainly interested in classical solutions.)
It is interesting to note that Golovkin first proves uniform estimates, which are
very sharp (see Remark 4.1 below), and then proves convergence, while McGrath
first proves the global existence of u® and then proves convergence (which
automatically implies uniform estimates, .though he does not mention it explicitly).
A recent paper by Beale and Majda [1) contains, among other things, related
results in which uniform estimates for u” are obtained in H*-norm with s > 4 and
in which convergence is proved in H*~2, for example (but with an explicit rate of
convergence).

In the present paper, we are primarily interested in the persistence property, i.e.
we want to show that the solutions stay in the same space H* as do the initial
values and that (strong) convergence takes place also in the same space.

2. Proof of Theorem I. We follow the line of McGrath, first proving the global
existence of u°. Then we invoke a general theorem on local continuous depen-
dence to prove the convergence u” — u®. In this sense the proof is not construc-
tive so far as the uniform estimates are concerned. In a later section we shall give
another, more constructive proof in the case when s is an integer > 3. Unfor-
tunately, the second proof does not seem to work for noninteger values of 5.

Thus we first prove the following theorem, which is a part of Theorem I.

THEOREM II. Let s > 2 and a € H’. Then there is a unique solution u €
C([0, 0); H*) of (E) with u(0) = a.

In this section we prove Theorem I assuming Theorem 11. The proof is a simple
application of the local convergence theorem given in [4, S} according to which
there is T} > 0, depending only on {|a®)), = ||u®(0)|l,, such that 4” and «* exist on
[0, 7)) for sufficiently small » and u” — «° in C([0, T\]; H*) as » -> 0. Then we
can apply the same zrgument starting from the initial time ¢ = T, and extend the
convergence to a larger interval [0, Ty], where T, — T, is determined by [[u®(T}))l,.
This process can be continued to cover any finite interval [0, T} in a finite number
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of steps, since u°(¢) exists for all # > 0 by Theorem II so that ||u°(¢)]|, is bounded
on any finite interval of ¢.

It may be remarked that the argument given above already shows that u” exists
on a larger and larger time interval as » — 0, but it alone cannot prove that u”
exists for all time. The latter fact is well known, however (see e.g. Leray [6]).

3. Proof of Theorem Il. Since the existence of local solutions u(¢) € H* for
u(0) = a € H* is known (se¢ {4, 5]), Theorem Il follows as soon as a global
estimate for u is obtained. Thus it suffices to prove

THEOREM 111. For each s > 2, there is a monotone increasing map ®;: R>, - R,
such that for any T > 0 and any solution u € C({0, T']; H*) of (E) with u(0) = a,
one has

(3.1) lu(O, < (T, flall,) foro<:<T.

The proof of Theorem 111 is not altogether simple, since the ohly source of such
a global estimate is the conservation of the vorticity

in L”-norm. To connect it with the H*-norm of u requires some amount of work.

We start with several remarks. (For the following notions cf. [3]) First,
u(t) € H* with s > 2 implies u(¢) € C!, so that u(¢) is sufficiently smooth for the
following computations to be justified. Second, the vorticity { satisfies the
first-order equation

(3.3) 0 +u-3=0 {0)=b=rota.
Third, the solution of (3.3) is explicitly given by
(3.4) §(e, X)"‘b(Uo.:("))v

where U, , = U, ' is the C'-diffeomorphism of R? induced by the velocity field u
between times s and ¢. Fourth, u is (formally) recovered from { by

(3.5) du = dg*¢,

where g(x) = (1/2a)rot log|x|; note that dg is a singular integral operator (plus a
delta function for some components). The convolution is well defined because
te L :

All the functions u, {, U are well behaved on [0, T'], but we have to estimate
their size in appropriate norms in terms of |jaf|, and T alone. This will be done
first for the case 2 < s < 3 by bootstrap arguments starting with the initial data

(3.6) aeH', beH 'elinlL™

For this purpose, it is convenient to introduce the following terminology: We
say a function F(¢) defined for 0 < ¢ < T has a property “uniformly” if the norm
describing that property is estimated in terms of [{a(f, and T alone. Thus Theorem
111 will be proved if we show that u is “uniformly” H*. We shall do this by
proving the following propositions successively. :
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(a) ¢(¢) is “uniformly” L® 0\ L2, and u(t) is “uniformly” L2. This is obvious
from (3.6), since the L?-norm of {(¢) for 1 < p < o0 and the L%norm of u(¢) are
known to be conserved.

(b) u(t) is “uniformly” quasi-Lipschitz continuous. This means that

(3.7) |u(s, x) - u(t, y)| < Klx = yl log(1/]x = yl) for |x - y|<1/2,

where K depends only on ||a||, and T. (3.7) was proved in [3] when the space
domain Q is bounded. It was proved in [7] for @ = R? under the additional
assumption that b € L'. Actually b € L? suffices for this purpose, as we shall
prove in Lemma Al in the Appendix. It should be noted that at this point we
cannot yet claim that u(¢) is “ uniformly” L>.

(©) Uy, is “uniformly” Holder continuous. The proof in [3], depending exclu-
sively on (b), applies to the present case without modification. We note that the
Halder exponent may be extremely small if T is large, but it is “ uniform” in our
sense.

(d) {(¢) is “uniformly” Héolder continuous. This follows immediately from (3.4)
and (c), since b € H*~ ! is Holder continuous.

(e) du(t) is “uniformly” bounded and *‘uniformly” Holder continuous. This
follows from (3.5) and (d), as we shall show in Lemma A2 in the Appendix.

() 3U,, is “uniformly” bounded and “uniformly” Holder continuous. This
follows from (e) and the standard theorems in ordinary differential equations.

() £(1) is “uniformly” H'** for some small ¢ > 0 depending on T and ||a|), only.
Indeed, { is the composition of b with U ,, where b € H s=1 and Y, , is bounded
and Holder continuous by (f). Thus the assertion follows from Lemma AS in the
Appendix. Note that U, , has the Jacobian determinant one.

(h) u(t) is “uniformly” H?**. This follows directly from (g) and Lemma A4 in
the Appendix.

(i) $(2) is “uniformly” H*~!. This follows from the theory of linear evolution
equations applied to (3.3) (see [5]). Since u(¢) € H*** and {(0)= b € H*"},
wheres — 1 < 2 < 2 + ¢, the solution {(¢) stays in H*~! “ yniformly”,

() u(t) is “uniformly” H*. This follows directly from (i) and Lemma A4, and
compiletes the proof of Theorem Il in the case 2 < 5 < 3.

The proof for larger s is easy. Suppose 3 < s < 4. Then the above result shows
that u is uniformly H” for any r < 3. Since b € H*"! and r may be chosen to
satisfy 2 < s — 1 < r, we see as in (i) above that { is “ uniformly” H*~!, hence u
is “uniformly” H* as required. A larger s can be handled step by step by the same
method.

4. Direct estimates for integers s > 3. If s is an integer > 3, we can prove
Theorem I more directly by estimating the solutions of (NS) directly. Let u = u”
be a solution of (NS) for u(0) = a € H*, where s is an integer > 3. Then u(¢)
exists for all time and is smooth, and it is known that

(41) (I < e fou(e) =l
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This can be deduced by a formal computation using (NS), in which the contribu-
tion from the viscosity term is negative and the term with the highest derivative in
the nonlinear terms is as usual eliminated by integration by parts, while the
remaining terms are estimated by the Gagliardo-Nirenberg inequality (for details
see e.g. Majda [8]). (Actually (4.1) is true also for the solution of (E), but its
justification is not so easy since u(f) is not necessarily in H**''. In any case,
however, we do not need it here.)
On the other hand, Lemma A3 of the Appendix gives

(4.2) u())l= < K(1 + log, JJu(t)]l5).

with a constant K depending only on ||b||,;~ and ||b]| 2, where b = rot a; recall
that the L?-norm of { = rot u is bounded in time.
It follows from (4.1) and (4.2) that

(4.3) 3u(1)5 < K(1 + tog, Ju(t) 1) Ju(2) |-

This differential inequality has a global solution if a € H?, with ||u(t)||, and, by
(4.2), ||9u(?)|| .~ bounded on any finite interval of 1. Then (4.1) shows that |ju(?)||,
has the same property too. Since the bound obviously does not depend on »
except via a = a” = u”(0), we have uniform boundedness if the a” are uniformly
bounded in H*-norm, since the L®- and L%-norms of rota is majorized by
llalls < liall,.

The remainder of Theorem I concerning the convergence can easily be reduced
to the local convergence theorem proved in [5]. Indeed, the uniform bound is
inherited by 4® = lim u” as long as u°(¢) exists, and u(t) exists as long as it is
bounded in H*-norm.

REMARK 4.1. (a) We do not know whether or not inequality (4.1) is true when s
is not a positive integer, but (4.2) is true when 3 is replaced by any real number
s > 2, as is seen from Lemma A3.

(b) Inequality (4.3) is essentially proved in Golovkin [2].

Appendix. We prove several lemmas which are used in the text. The first four
lemmas are concerned with estimating the velocity » in terms of the vorticity
¢ = rot u (see (3.2)).

LEMMA Al. Let u € L*and let { € L™ N L2, Then u is quasi-Lipschitz continu-
ous:

(A1) u(x) — u(y) < elx = yl(I¢ll=tog(1/]x — yI) + (1€l 2)
for|x — yl < 1/2. -

PrOOF. We use the formula
(A2) u(x) —u(y) = [ (8(x - 2) - g(y - 2))3(2) &z,

where g(x) = (1/27)rot log |x|. We split the integral into two parts v, and v,
according as |x — z| < 2r or not, where r = |x — y| v, is estimated by cr||{|| ;» as
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in [3]. v, is further split into two parts v; and v, according as 2r < |[x — z|{ < 1 or
not. v, is estimated by clf{|f,=rlog(1/r) as in [3], while v, can be estimated by
crlitll L2- Summing up, we have proved the lemma.

LEMMA A2. In Lemma Al let § be Holder continuous with exponent 8. Then du is
bounded and Hblder continuous with exponent 8.

PRrOOF. First we note that { is bounded, since it is Holder continuous and L2
To estimate du we use formula (3.5), which is essentially identical with (A2), and
split the integral into two parts according to the size of the argument x in g(x).
The contribution from |x| € 1 can be estimated as in the usual Holder estimate,
while the contribution from |x| > 1 can be easily handled by noting that { € L2,

LEMMA A3. In Lemma Al let 0 € L? for some p > 2. Then

(A3)  [dullix < clllie + cliShez + c IEl= tog[1 +(J08H oo/l = )]

If in particular uw € H’ with s > 2, ||3{|| ., may be replaced by ||uj|,. Note also that
the right member of (A3) is monotone increasing in ||{|| .

PrOOF. Again we use (3.5), in which we decompose g “smoothly” into two
parts g = g, + g,, where g, has support in B,, = {|x} < 2r} and g, is zero in B,,
with r > 0, and write du = w, + w, accordingly. Then we have w, = g, * 3¢, and
application of the Holder inequality gives an estimate

(A4) Iwill,= < ¢, 7'~ *?|3¢]l,» foranyp > 2.

To estimate w,, we split the integral representing w, = dg, *{ into two parts
according as the argument in g, (which is outside B,) is inside our outside of B,.
(If » > 1, the first part does not exist.) Since |3g,(x)| < c|x|~% the first part is
majorized by c|i{|| - log(1/r) and the second part by cl|{||,:. Summing up, we
obtain

(A5) I9ulle= < cl¢lli=log(1/r) + clllez + c,r' =273 1o,

where the first term does not exist if r > 1. Thus we may replace log(1/r) by
log(1 + 1/r) to make (A5) valid for all r > 0. If, then, we determine r by
r' 238N Lo = (18]l 1, We Obtain (A3).

LEMMA A4. Let u € L* Foranys > 1,u € H* is equivalent to ¢ & H* ",
PrOOF. The proof is obvious if one considers the Fourier transform of u.

LEMMA AS5. Let f € H'**(R™, R). Let g be a C'-diffeomorphism of R™ onto
itself, with the Jacobian determinant J(x) > 8 > 0. Assume, moreover, that 3g is
bounded and Holder continuous with exponent k, where 0 < h < k < 1. Then
u=foge H""R™ R).
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PrROOF. We have to show that v € L7 and v = du € H".
(a) u € L? follows from

hll® = [ 1) ax < 871 f (2, (x) ax = 8 A,

(b) To show that v € H* it suffices, in view of (a), to show that the
(homogeneous) H*-seminorm |jo||,,,, is finite. But

(A6) ot = < f fo(x) = o(p)lx = 1" dx ay.

Since v(x) = 9f(g(x))dg(x) in a slightly symbolic notation, the integrand in
(A6) is majorized by

lar(g(x))"1g(x) — ag(»)['Ix -yl
+17(g(x)) - (g 198 () '1x = »I

In the first term of (A7), |9g(x) — 3g(y))*]x — y} ™ " can be majorized by
clx — y1*= 2" mfor|x — y| < 1 and by ¢Jx — y| ™ 2% for|x — y| > 1 because dg
is bounded and k-Holder continuous. Thus the integral of this factor in y gives a
finite constant, and the contribution of this part to (A6) is finite due to the facts
that 3fisin H" ¢ L?and that J, > 8.

In the second term in (A7), |8g( y)|? is bounded by a constant, and |x — y|~ ™~ 2*
may be replaced by a constant times |g(x) — g(»)[” ™ 2* because g is uniformly :
Lipschitzian by the boundedness of dg. Using again J, > 8, the integral is seen to
be finite because df € H*. Summing up, we have shown that v € H*.

-m—2h

(A7)

-m-~2h
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