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PREFACE

The increased use of mathematics and sta-
tistics in solving business and industrial prob-
lems focuses attention on linear programming as
one of the few sophisticated analytical devices
finding wide aceeptance in industry. A number of
universities have introduced courses in linear
programming, but, until recently, there was no
suitable textbook. Most of them either avoided
entanglement with the mathematical aspects of
linear programming completely, or else discussed
them at a level comprehensible only to the math-
ematically initiated. To a growing group of non-
mathematically-oriented people, both on and off
campus, who heed the trend and therefore wish
to understand theZhaom i
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Vi PREFACE

this book, would gratify, rather than surprise, the author.

Assuming only a knowledge of elementary algebra, the
book begins by explaining the mathematical characteristics
of a linear programming problem. This is followed by a careful
explanation of the rudiments of matrix algebra and deter-
minants, and such basic concepts as linear independence,
vector space, and basis. In Chapter I11 the mathematical prop-
erties of linear programming solutions are discussed so as to
pave the way for the development of the simplex method. The
method itself is treated in Chapters IV and V which deal with
its theoretical and computational aspects respectively. Two
important variations of the simplex method, the revised
simplex and the dual simplex, are introduced in Chapter VI.
Sensitivity analysis is taken up in Chapter VII and is illus-
trated with practical examples. The theory of the dual is
developed in Chapter VIII by employing the novel concept
of a vector solution pair.

With much of the basic theory out of the way, the trans-
portation problem is introduced as a special case of the general
linear programming problem. Finally, in Chapter X, a number
of the more advanced linear programiming topics are described.

Numerical examples throughout the text illustrate im-
portant concepts and theorems. Examples with business or
industrial content are used whenever possible so that the
reader will constantly be reminded of the practical relevance of
linear programming. No attempt is made to circumvent con-
cepts and theorems just because they are mathematical. On
the contrary, continuous effort is made to deal with them
simply and clearly, but with increasingly liberal use of mathe-
matics consistent with the expected development of the reader’s
mathematical ability. Mathematics is basically an essay in
logic, and what is logical should not be difficult to understand
once its baffling symbols and fundamental precepts are firmly
grasped. As intimated earlier, one of the prineipal aims of this
book is to sharpen the reader’s mathematical facilities to a
point where, upon completion of this volume, he may venture
into technical journals in this field.

Students whose major interests lie in areas such as ¢pera-



PREFACE vii

tions research, industrial engineering, management science,
and applied economics, whether they be undergraduate or
graduate students, will find this book especially designed for
use as a text. Exercises of a varied nature, such as those that
illuminate theory and those that develop skill, are included
in each chapter, thus making this book suitable also for
managerial and staff personnel in industry as well as for any-
one else who is willing to use the self-study method. Tested in
a quarterly course at Drexel for two years, it has been found
to contain more material than can be handled comfortably in
one quarter. If time is a limiting factor, then one may omit,
without loss of continuity, the following material: Sections
6-5, 6-6 of Chapter VI, Chapter VII, Section 84 of Chapter
VIII, and Chapter X. Students with adequate background
knowledge of matrix algebra, however, should have no difficulty
in covering the whole book simply by substituting Chapter 11
for the omissions suggested above. One advantage of this book
is that it permits individual instructors to add to it in what-
ever way they deem desirable. For instance, those who favor
theory may introduce additional materials on network flow
theory, whereas others who favor applications may expose the
students to more industrial examples found in current litera-
tures.

Thanks are due to my colleagues at Drexel, particularly
Samuel 8. McNeary who read and offered important advices
on the mathematical parts of the original manuseript. All
errors are, of course, responsibilities of my own.

A. M. Chung
Mayv, 1962
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INTRODUCTION

1.1. General.

In the history of management technology, there is perhaps no
other period more comparable in importance to the era of Frederick
Taylor than the decade immediately following the Second World
War. During this decade two important developments—of break-
through proportions—paved the way for important advances in the
essential art of management planuing and control. One was the advent
of the digital computer and the other was the application of higher
mathematics and statistics to problems of industrial management.
The former made possible rapid and economical manipulation of
massive data, while the latter provided the necessary theoretical
framework for the organization and analysis of these data. The result
is that business problems of unprecedented complexity can now be
solved and made a part of the rational decisions on which the success
of businesses so importantly depends.

A vital part of these advances in management technology is the
increasing application of linear programming to solve a wide range
of managerial problems, This analytical tool has found ready adop-
tion in many industries, including petroleum, chemicals, steel, and
agriculture. Exploratory studies using the linear programming
approach have also been made by airlines, railroads, utilities and
financial institutions.

Moreover, interest in linear programming extends beyond the
1




2 LINEAR PROGBRAMMING

world of business, Economists, for instance, have found it helpful in

‘attempting a re-appraisal of the theory of the firm and the theory of
resource-allocation in a free-price economy. Mathematicians have
through it discovered new avenues of research and investigation. In
short, it is a subject that will be of considersble interest and impor-
tance to the business and academic worlds for some time to come.
Our approach here, therefore, is to emphasize the fundamentals of
the theory of linear programming, which, however, will be illustrated
from time to time by problems relevant to the practical business
world.

1.2. Characteristics of Linear Programming Problems.

Generally speaking, linear programming is a mathematical op-
timizing technique applicable to a class of problems baving certain
characteristics in common. The interpretation of these character-
istics varies in accordance with the specific content of the problem.
For this reason, it i8 best to describe these common characteristics
in mathematical terms 80 as to retain their generality.

(1) Alipear objective function—All linear programming problems
have a8 their objective the optimization of some explicit linear func-
tion of many variables. If we denote this linear objective function by
f(X) and the appropriate variables of the problem by 2, 23, . . . , s,

then the goal of a linear programming problem is always to maximize
(or minimize)

(1.2.1) X)) =z + x4 ... + caxa®

where ¢y, . . ., ca represent the parameters of the problem. In other
words, the goal is not just to accomplish something but to accomplish
it in the ‘“‘best’” possible manner. The fact that business operations
quite often are conducted with this type of goal in mind, eg., to
maximize profit, or to minimize cost, substantially explains why
linear programming is found useful in business.

However, not all problems with optimizing objectives call for
linear programming solutions. The objective must also ba capable of
being stated s a linear function of the variables of the problem. What
do we mean by a linear function then? In mathematics, a function,

* Obviously the coefficients- ¢y, ..., ¢, are not restricted ms to eigne either
individually or collectively,
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sy f(X), is described as linear if and only if the following two con-
ditions are satisfied:*

a. f(kX) = kf(X),
b f(Xy + Xo) = f(X)) + f(X2),

where k is a constant coefficient; X, the set of variables, z,, s, . . . , Za;
snd X, X,, two different sets of values of zy, . . . , z.. Stated in words,
“the first condition simply stipulates that multiplying the variables
by a certain constant k should result in the same functional value as
multiplying the functional value of X by the same constant k. The
second condition is & little more difficult to explain. Essentially it
requires that, given two sets of values of the variables, X; and X,
the functional value of (X, + X;) must be the same as the sum of
the two functional values obtained from X; and X, separatively.
Based on the above definition, we can easily verify that a first
degree polynomial such as the one shown in (1.2.1) is & linear function.
For if
J(X) =i+ eaxa + .. .+ Catt,
then
F(kX) = ci(kzy) + es(kxs) + . . . + ea(kza)
= k(e + ese + . . . + caZn)
= kf(X).

Moreover, letting X; represent the set of values, zy, . .., %1, and
X represent the other set of values, zy, . . ., Za, We have

J(Xi+ Xo) = ci(@zn + za) + ca(@iz + Ta2) + . . .+ CalZin + Z2n)

== (cxxu +etin+ ...+ Cuzln)
+ (exs1 + %22 + . . .+ Coan)
= f(X1) + f(X3).

On the other hand, such functions as sin z; + sin z., z¥ + 3, or in
general, all trigonometric functions, exponential functions and poly-
nomials of higher degree than 1, are not linear functions because both
conditions cannot be satisfied. Some functions may satisfy one but

3 3
not the other condition. For instance, f(X) = %i—% satisfies the
3

* Throughout this text, the domain of real numbers is always assumed im-
plicitly. In other words, functions and variables are siways defined over the

domain of fesl numbers, which is all that is necessary for the usual applications
of linear prograinming.




4 LINEAR PROGRAMMING

first but not the second condition. Consequently, it is not a linear
function.

(2) A set of linear constraints—Suppose we were to maximize a
linear function such as 2z, — 3z,. Since x, is associated with a positive
coefficient and xz, with a negative coethicient, obviously we could
increase the value of this function as long as we increase x; and de-
crease x;. This could be continued indefinitely until x; is increased to
positive infinity and r: decreased to negative infinity with the result
that the value of the function would be positive infinity. As a matter
of fact, all linear functions by themselves have a maximal value of
positive infinity and a minimal value of negative infinity if no restrie-
tions are placed on the values of their variables. This means that they
all have the same maximum and minimum. Consequently, the prob-
lem of optimizing a linear function is not a mathematically meaningful
probiem unless the variables are constrained as to the ranges of values
they may assume. In linear programming such restrictions are con-
tained in a set of linear inequalities as follows:

auy -+ @ity + . . .+ GiaZn < by
ATy + Gz + . . . + G2nZn < bz,

(1.2.2)

Ami®) + GpaZz + . . . + QanZn < b,
where ai, @iz, . .., Q1n, .. ., Qm1, Gme, . . ., Gmn are constant coeffi~
cients* and by, b,, . . ., b, simply constants. There are three points

that should be borne in mind in connection with these constraints
(called structural constraints in linear programming terminology).
First, they are linear in the same sense as the linear function is defined
above. Second, they are characteristically inequalities although
equality-constraints are not categorically excluded. Finally, the num-
ber of such constraints, i.e., m, is not restricted in any way except as
it affects the practical problem of computation. Together these con-
straints define a region of acceptable values of the variables. Since
this region may or may not include values up to infinity, linear pro-
gramming becomes a problem of selecting a set of values (of the

* Since there are m inequalities and n variables, it is necessary to differentiate
among the coefficients by double subscripts with the first referring to the in-

equality and the second to the variable. Thus, g, i8 the coefficient of the nth
variable (z,) in the first inequality.
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variables) within this region, which will yield the maximal (or mini-
mal) value of the objective function.

The relevance of these mathematical expressions to the real world
is pot far to see. For example, if we are describing a management
problem of deciding on how much of each of a group of n products
to produce, it is reasonable to expect that some of the products may
require the same type of steel, or the same kind of welding operation,
or the same assembling facilities. To the extent that the supply of
raw material, or of machine time, or of assembling facilities js fixed,
which is again reasonable to expect, there is an effective constraint
on the relative production levels of these products. In addition, there
may be time constraints imposed by delivery schedules, financial
constraints imposed by budgets, technical constraints imposed by
engineering considerations, and so on. As the next section will show,
the question is not so much whether there are constraints or not, hut
whether they lend themselves to unambiguous mathematical state-
ments and, if they do, whether the resulting statements are linear
inequalities. If they are not, then the problem i3 not a linear program-
ming problem.*

(3) The non-negativity constraints—As a direct outgrowth of
its application in-business and industry, all linear programming
problems require that the solution values of their variables be non-
negative, i.c., either zero or positive but not negative. This is neces-
sary because the variables in business and industry, eg., level of
production, amount in inveutory, etc. usually have no mcaningful
negative counterparts. Mathematically these non-negativity con-
straints are written as follows:

(1.2.3) Ty, Tz . .., Tn = 0.

Although at first glance the inclusion of these constraints seems to
compound the difficulty of solving the problem, actually—as we will
see in Chapter IV—they can be taken care of by a simple rule of
transformation which automatically excludes all unacceptable nega-
tive solutions. Their presence in the problem has no more operational
significance than the secondary advantage of providing an additional

* Current efforts to extend the simplex method of solving linear programming
problems to programming problems with non-linear constraints are evidenced
by Peter Wegner's article, “A Non-linear Extension of the Simplex Method,”
Management Science, VII (1960), pp. 43-56.
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check on the accuracy of computations-—a point which will become
clear a8 we complete Chapter V.

In summary then, a linear programming problem is recognized hy
the following three parts:

Maximize f(X) = a1+ 6+ ...+ s, (1.2.1)
subject to: anty 4+ Guexs + . . . GinZa < by,
anZ; + ants + ... 4 Gz, S b!: (1-2'2)
(1.2.4) . . . .
Uiy + OmaXa + . . . + CanZn < Dy
and X X2y oo oy T 2 0. (12.3)

It may be well to point out that a * <” inequality may be converted
into a “>"" one if multiplied on both sides by —1. Hence, the ex-
pression of the structural constraints in (1.2.4) is perfectly general.
Furtbermore, since all inequalities can be converted into equalities
by means of adding or subtracting non-negative variables, some
prefer to write the constraints in the form of equations. In that event,
however, it must be stipulated that n > m, or the problem may very
well have no solution.

A casual survey of (1.2.4) would probably suggest that the prob-
lem could be solved by first finding all possible solutions to (1.2.2);
then eliminating those which violate (1.2.3), and finally, selecting
among the remaining solutions the one which optimizes f(X) in
(1.2.1). We soon realize, however, that (1.2.2) admits of an infinite
number of solutions if any solution exists at all; therefore a complete
enumersation of all of them is quite impracticable if not impossible.
Accordingly, s more efficient method based on careful analysis of the
theoretical properties of the problem is necessary. Such a method
is the simplex method, first proposed by George B. Dantzig in
1947 in collaboration with Marshall Wood, Alex Orden and others
while working on research projects in the U.S. Department of Air
Force. This method together with its subsequent modifications,
extensions and applications will constitute the subject matter of the
ensuing chapters of this text.




