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Preface

It was originally planned that the Theory of Stochastic Processes would consist of
two volumes: the first to be devoted to general problems and the second togpecific
classes of random processes. It became apparent, hc -ever; that the amount of
material related to specific problems of the theory could not possibly be included
in one volume. This is how the present third volume came into being. -

This volume contains the theory of martingales, stochastic integrals, stochastic
differential equations, diffusion, and continuous Markov processes.

The theory of stochastic processes'is an actively developing branch of mathe-

matics, and it would be an unreasonable and impossible task to attempt to
encompass it in a single treatise (even a multivolume one). Therefore, the authors,
guided by their own considerations concerning the relative importance of various
results, naturally had te be selective in their choice of material, The authors are
fully aware that such a selective process is not perfect. Even a number of topics
that are, in the authors’ opinion, of great importance could not be included, for
example, limit theorems for particular classes of random processes, the theory of
random fields, conditional Markov processes, and information and statistics of
random processes. :
* With the publication of this last volume, we recall with gratitude our associates
who assisted us in this endeavor, and express our sincere thanks to G. N. Sytaya,
L. V. Lobanova, P. V. Boiko, N. F. Ryabova, N. A, Skorohod, V. V. Skorohod,
N. I. Portenko, and L. 1. Gab. '

L I. Gihman and A. V. Skorchod
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Chapter I

Martingales and Stochastic Integrals

§1. Martingales and Their Generalizations

Survey of preceding results. We start by recalling and making more precise the
definitions and previously obtained results pertaining to martingales and semi-
martingales (cf. Volume I, Chapter II, Section 2 and Chapter III, Section 4).

Let {2, &, P} be a probability space, let T be an arbitrary ordered set (in what
follows only those cases where T 1s a subset of the extended real line [—o0, +0]
will be discussed) and let {§%,, t € T} be & current of o-algebras (F, < &) if 1, <1,
then ¥, &, The symbol {£(r), &, t € T} or simply {£(¢), ¥.} denotes an object
consisting of a current of o-algebras {§, € T'} on the measurable space {£2, &}
and a random process £(¢), t € T, adopted to {&., € T} (1 e., £(¢) 1if F,-measurable
for each 1< T) This object will also be referred to in what follows as a random
process

A random process {£(¢), &, t € T} is called an §,-martingale (or martingale 1f
there is no ambiguity concerning the current of o-algebras ¥, under considera-
tion) provided

(1) Ejé@)| < VteT

and
E{£(0)| 3} =£(s) fors<t s,teT,

it 1s called a supermarnngale (submartingale) if 1t satisfies condition (1) and
moreover

E{eD|BI<&(s), s<t steT

()
EEO|TI=£G6),  s<n)

Observe that the above defimition differs from that presented in Volume I since
we now require finiteness of the mathematical expectation of the quantity £() in
all cases Previously, in the case of the supermartingale, for example, only the
fimteness of the ¢ xpectation E£€ (¢) was assumed.

8650286



2 I Martingales and Stochastic Integrals

The defimition presented herein s equivalent to the following {£(1), &, 1€ This
a martingale (supermartingale) if for any set B, € ¥, and for any s and ¢ belonging
to T such that s <y,

Jo,6()dP =5, 6(s)dP (1o, £() dP<1y, £() dP)

Supermartingales and submartingales are also called semimartingales.

In this section we shall consider mainly semimartingales of a continuous
argument.

The space of all real-v-lued functions on the interval [0, T] which possess the
left-hand Iimit for each re (0, T] and which are continuous from the right on
[0, T) will be denoted by @ or by @{0, T].

Analogous meaning 1s attached to the notation 2[0, T'), 20, c0), and 20, ]

A number of inequaltties and theorems concerning the existence of limits plays
an important role in the martingale theory The following relationships were
established 1n Volume I, Chapter 11, Section 2+

If £(¢), t e T, is a separable submartingale, then

sup EE7(1)
P *W=Cl<stl
{s't:gf = } c
:
4) %[ffgf*(t)] <q° fggE[F(t)]", q=;—f—;, p>1,
. EEm-b)
(5) EV[a.b)\s'gg rpupa

here a*=a for a=0 and a* =0 for a <( and v[a, b) denotes the number of
crossings downward of the half-interval {a, b) by the sample function of the
process £(t) ¢a more precise definition 1s given in Volume I, Chapter I, Section 2)

We novrecall the defimtion of a closure of a semimartingale.

Let {¢(r), &, ¢ € T} be a semimartingale and let the set T possess no largest
(smaliest) element. The random variable 5 1s called a closure from the nght (left) of
the semimartingale ¢ (1) if one can extend the set T by adding one new element b
(a) which satisfies

(<b(@>a) VeeT

and complete the current of o-algebras {§,, t € T} by adding the corresponding
a-algebra &, (§.)so th. the exteaded family of the random vanables £(1), te T,
T’ =T u{b} (T' = T u{a}) also forms an §,-semimartingale.

Theorem 1, Let £(t), t € T, be a separable submartingale, T < (a, b), and the points
a and b be the hmit points for the set T (—co < a < b < ©). Then a set A of probability
0 exists such that for w€ A:



1 Martingales and Their Generalizations ’ 3

a) in every interior point t of the set T the limuts é(t—) and £(¢+) exist,

b) if sup {E¢*(¢), t € T} <0, then the imut £(b—) exists; moreover, if for some 1o
the family of random variables {£(1), t €lto, b)) 1s uniformly integrable, then the
Imit £(b=) exists in L, as well and £(b—) 1s a closure from the night of the
submarnngale;

¢) of hm,., E£(t)> —0 then the family of random vaniables {£(2), t € (a, to]} 15
uniformly integrable, the limit £(a+) exists for every w€ A also in the sense of
convergence in Ly, and £(a+) is a closure from the left of the submartingale

Proof. The existence with probability 1 of the one-sided limits £(t—)and &(¢+) for
each ¢ € {a, b] under the condition that sup {E€*(2), t € (a, )} < 0o was established
m Volume I, Chapter III, Section 4

Furthermore, if the family {£(¢), t € {to, b)} 1s uniformly integrable then the
convergence of &(f) to £(b—) with probability 1 as ¢t b implies that this con-
vergence 1s also vahd in L, and that é(b—) 1s a closure from the night of the
submartingale £(¢), ¢ € (a, b). Thes i1s proved in the same manner as in the case of
submartingales of a discrete argument (Volume I, Chapter II, Section 2).

We need now to verify assertion c).

Let ! =hm,, E£(1). Since E£(f) 1s a monotonically nondecreasing function the
existence of the hmit is assured Moreover, the equality

€ =2¢6"(0—-€0)
imphes that

sup Ejg(0)|<2E&*(t)—1=C <0

te(a 10l

In view of Chebyshev’s inequality P(B,)< C/N, where B,={}¢(t)] >N}, 1e,
P(B,)>»0 as N > o0 uniformly in t Let £ >0 be arbitrary and ¢; be such that
E£(n)—1<e/2forall t <ty Then for te(a, t;]

§5 |6} dP = iy £(8) AP+ (5 my €() AP~ EE(f)
= Le(:)>N £y dP+ I(s(:)>-m &(t)dP—EE£()
<[5, 6] dP+=,

so that ]B' |£(t)| dP < ¢ for all te (a, t;] and N sufficiently large. Thus the family
{€(1), te(a, to]} 1s umformly integrable The himit lim,; , £(¢) exists with probability
1, therefore 1t also exists 1n the sense of convergence in L, /

Now £(a+)1s indeed a closure from the left of the submartingale {£(¢), re T'}
Thus follows from the fact that 1t s permissible to approach the limit as s | @ under
the integral sign in the inequahty

(g &(s)dP<|g&(t)dP, s<t, Be(\& O

teT



4 I Martungales and Stochastic Integrals

Remark Itis evident that assertion ¢) of the theorem s vahid for sequences also In
this case the assertion can be stated as follows

If{ - &=n),&(-n+1), , €(0)} s a submarangale and hm, E£(~-n)>—00,
then the sequence {£(—n)} is uniformly integrable, the linut £ =hm £(—n) exists
with probability 1 1m L, as well and 1s a closure from the left of the submarningale
{¢(n),n=-—k,—k+1, ,0}

In what follows we shall call a semimartingale uniformly integrable |f a
corresponding famly of random variables £(t), r € T, 1s uniformly integrable We
shall refer to a martingale as integrable if sup {E|£(1)], re T} < 0.

Theorem 2. Let T < (a, b) and let a and b be inut points of the set T (—0<sa<b <
00). In order that martingale {£(t), &, t € T} be uniformly integrable, 1t 1s necessary
and sufficient that a random variable n exist such that

(6) Emml<wo, E0)=E{nlg}), 1eT

If this condition 1s satisfied, we can set 1 =himyy,, €(t) and the variable n will be
uniquely determined (mod P) n the class of all o{3, t € T}-measurable random
variables.

Proof. Bv Theorem 1, if the martingale {£(1). &, t € T} 1s uniformly integrable,
then 1t possesses a closure from the right and therefore admits representation (6).
Now let martingale £(¢) admit the representation given by formula (6). Then

[ £@)dP=[,ndP VAec¥,
which imphes that
) falé)|dP=fgin|dP  VBe3,

In particular, El¢(s)]<Eln| Therefore Chebyshev’s inequality imphes that
P{i&(t)|>N}->0 as N > uniformly in ¢+ Applying inequality (7) to the set
B = B, ={|¢(t)| > N} we verify that the famuly {£(¢), € T} 1s umformly integrable

We need now to prove the uniqueness of representation (6) in the class of all
o{%., t € T}-measurable random varniables Suppose that two such representations
exist in terms of the random variables n,, 1 = 1,2 Then

E{{IZ}=0 VieT,
where { =n,—-m
Thus
fa¢dP=0

for all A belonging to ¥, and all te T, and consequently for all A belonging to
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{3, t€ T} Since the vanable £ 1s o{i, t ¢ T}-measurable it follows that (=0
(mod P) [

Remuark 1t {&(¢), ¢« T}isamartingale and T contains a maximal element then the
famuly of random variables £(¢), t € T s uniformly integrable

A o{53, t € T}-measurable random vanable n appearing 1n representation (6)
is called the boundary value of the martingale £(¢), te T

It was shown in Volume I, Chapter I11, Section 4 that under very generah
assumptions there exists—for a given semimartingale-—a stochastically equivalent
process {{(r), &, t=0] with sampie functions belonging to 2{0, ), and,
moreover, the current of o-algebras §, 1s continuous from the right, 1¢e ,

8!+:81 Vi >0

In this section we shall assume, unless stated otherwise, that the semimartingales
under constderation possess these properties

Quasi-martingales. Let {i§, ¢ =0} be a current of o-algebras continuous from the

right (3: = EH)

Definition. A process {£(¢), 1 =0} adopted to §, 1s called a quas:-martingale
(&:-quasi-martingale) if

Elg(r) < Vi=0

and
sup % ElE(t) - B )| Bl =V -

where the supremum 1s taken over arbitrary values of n and ¢, 15, s,
OS(U<tl<t2< ‘<[,,<®

It will be shown below that a study of quasi-martingales can be reduced to a
study of semimartingales

As examples of quasi~-martingales, one may note martingales, super-
(sub)martingales for which inf E£(¢)> —co (sup E£(r)< o) and also processes
which are differences of two supermartingales It turns out that these examples
exhaust all the possible quasi-martingales

Set

8. )=¢O-EMIT)  (s<n), a(=E&®)

Then

n 1 rn—1
Y la()—a(t. )= L B8, ti )< V,
3 k O

k=t
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1e . a(r)safunction of bounded vanation In particular, for any 1 > () there exist
limits a(t—) and a(¢+) and, moreover, a(0)=hm,_ o a(r)

Inequalities (3)-(5) can be generalized for the case of quasi-martingales For
this purpose observe that inequalities (21) and (23) derived 1n Volume 1. Chapter
11 Section 2 for countable sequences can easilly be adapted for separable
quast-martingales and can be written in this case 1n the form

_sup E¢T(+V
==
sup,E((1)=b)" +V
b-a )

(8) P{sup £(¢) = C}

©) Ev[a, b)<

where v[a. b)15 the number of downward crossings of the interval {a, ) Utihzing
inequality (9) one can prove the following theorem (analogously to the proofs of
Theorems 6 and 7 for senumartingales in Volume I, Chapter II1, Section 4)

Theorem 3. A separable quasi-marnngale £(t), t >0, possesses with probability 1
foreach t the left-hand and nghi-hand imits Moreover, {£(t+), §,+. t =0} 1salso a
quasi-marungale with sumple functions which are continuous from the right and
P{&(r)=¢(t+)} = | at each point t such that %, = %,. and E£(r) ts continuous

In view of this theorem, we can, without loss of generality, concentrate, in what
follows, only on those quasi-martingales with sample functions belonging to &
with probability I and for which &, = 5,. for all r=0 In this subsection we shalt
assume that the stipulated conditions are satisfied

Theorem 4. An arbitrary quasi-martingale admuts representation
EN)=p()+{@),

where w(r)1s a martngale and Ej{(1)'> 0 as t » .

Tlus decomposition 1s umque

If £(r) 15 a supermarungale sansfying condition wf EE(t)> —00, then [(t) 15 a
nonnegattve supermartingale.

Proot For each s >0 and =0 we set

E(s. 1) =E{&(s + )| &},

ind conwider a separable modification of the process £(s, t) We show that for a
tised 7, €(s. 1) as a funchion of s 1s « f bounded vanation with probabihity 1
Indeed

n

:E‘ f(ﬁn ” *£(5k+1~ ')I = kz lE{f(sk + ’)—_ E{E(Sk-ﬂ + t)l%l*&-l}l%l}'

-0
n-—1

= Z E{‘S(Sk L, S+t +[)||R,}
K=o
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and

n 1
E k}:o (s 1) = (s, D<=V

It may be assumed that the set of separability points of function £(s, ¢) in variables
s and ¢ 1s of the form I x I For each te I we choose sequences {so, s,, L Snt.
sk € I, such that these sequences-—viewed as sets—increase monotonically as
increases and in the limit exhaust the whole set I Moreover, the sums
Sroo €k 1) = E(skan, t)| are monotonically nondecreasing and approach their
upper bound V (¢) Thus EV (1)< V and V(r) <o with probability 1 for eachre [
This imphes the existence of a set N € S with P(N') =0, such that if w& N then
V(t)< o for any t Thus, there exists with probability 1 the limit

u(t)=l.lgg £(s, 1)
Lets, T Since

lie ()= £ N =T 1€ (ks 1)~ £k 1. DI < V(0),

w(t) 1s an integrable random variable and the sequence £(s,, f) possesses an
integrable majorant Hence we have for ¢, < ¢,

Bl (12)1 &0} = B hm E{(s +12)| Fu &,

=hm E{g(s + 1)1 Fo) =n (1)

Thus w(r) 1s an §,-martingale
Now set [(t}=&(t)—u(t) Then EiZ(t))»0as t>
Indeed, assume the contrary Then an £ >0 exists and for each N>0a =ty
satisfying tx > N such that E|{(tv)|> & Now choose some 1, Since
El¢(n) = E!§(‘1)“!L‘2 £(n, s) = Sh_’"; El6(r) - €(r1, 5)),

one can find s, such that E|£(r;)— (15, 51)>¢ Set t;=1,+5, and choose t;> 1,
such that E|{(r;)| > ¢ We continue this process indefinitely Then

2n 1 n
E )_; 18, 1)) = E; 18(t2n 1, t26)]
= E S €00~ E€(0)| B}l = e »c0,

which contradicts the definition of a quasi-martingale
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Thus the existence of a decomposition satisfying the conditions of the theorem
has been established We shall now prove its umiqueness

Let there be two decomposttions &(1)= u,(1)—&1(t)=wuar)— &(r) Then
wilt)—w2(t) = &) ¢1(1), while E|Z () £2(e)} > 0 as t >0 On the other hand,
lie1(8)~ 12(¢) 15 a submartingale and E|w,(t) — w2(r) 1s @ monotonically nonde-
creasing function of ¢ Consequently, Euu,(s) -u(0)=0 and u, ()=
w2(t) (mod P) Finally if £(¢) 1s a supermartingale, then

u(@)=hm £(s, )= hm E{g(s + D[ F )< £,

which imphes that {(¢)=é(t)—w (£)=01n this case [

Definition. A nonnegative supermartingale sat.sfying condiion E£() > O as ¢ >
1s called a potennal

Observe that for a potential the mit £, = him,.. £€(t) exists and £, =0 with
probabihity 1

Corollary. Supermartingale £(t) sansfying the condinion inf E£(¢) > —o0 admuts the
decomposition £(t) = p (1) + 7 (t), where u(t)1s a marnngale and w(t) s a potential
This decomposition is unique

By analogy with the classical theory of superharmonic functions this de-
composition is called the Riesz decomposition We shall agree to call the
decomposition which was established in Theorem 4 Riesz’s decomposition as
well, and a quasi-martingale /(2) satisfying condition E[£(2)] > 0 as ¢ >0 will be
called quasi -potennal.

We now show that an arbitrary quasi-potential can be represented as a
difference of two potentials

Let ¢(1) be an arbitrary quasi-potential. Set

k lf_%—__l_)’

Sk n =5(2—,., on

5Z,u=max (6k,m 0), 6kn =8:n—6k ns

B mO=E[ T 53l

k=()

ﬂ:(:)=E‘kz sl

=1

where j(t) 1s an integer defined by conditions (j(1)—1)/2" <t=<y(r)/2"
Note that for r = /2"

(O=E{ T 5| & =72 0)-720),

and that the absolute convergence (modP) of the series ¥, , 8, and its
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integrabiity follow from the defimtion of a quasi-martingale Clearly
E{#] ()| F,} < 71 (s) for s <t so that 77 (1) 1s a potential

Weshowthat (1)< 77 ' (1),n=1,2,. Consider asummand appearing in
the expression for m; (t), for example E{6% ,|&:} (k/2" =1). We have

E{azn\&}%{[ 2“1) E{ (2::'1)1 i’:,}
+((%&§)—E{ 2k..:2>|?52k+, HTS ]

< E{[83k ne1 + 82141 na1]| Bk

5

This implies the monotomcxty of the sequences 7} (t) Moreover, it follows from
that proven above that 7" (¢) 1s also a potential and that 77 (¢) < (1),
Now set

o (t)=hm 75 (2), a_()=lim 72 (¢)

These limts exist for each r with probability 1 Since E(xl(r)+#7(e))=
EXr-ol6es|< V, it follows that Emr.(f) < 0. Clearly m.(t) are supermartingales

It 1s easy to verify that Em1(f)> 0 as ¢ - o0 uniformly 1n n Hence 7.(f) are
potentials

We now define processes m.(f) for all # =0 1n such a manner that their sample
functions will be continuous from the right with probabihity 1. Taking into account
the fact that the process £(¢) is also continuous from the right, we observe that
equality £(t) = . (t)— w_(¢) 1s valid for all £=0 with probability 1.

Theorem 5. If {(t) is a qu sipotential with sample functions belonging to 2, then
potentials m.(t) and w_(t) exist such that with probability 1

(W =m )+ (1) V=0
Stopping and random time substitution. Now we shall consider submartingales

{&(t), & teT),

where
T=N={0,1,...,n, .} or T=[0,00)

If T = (0, ) we shall assume that the sample functions of the process £(¢) belong
10 P[0, ©), F: = F:+, 1 €[0, ), and Fo contains all the subsets of probability O

Recall the definition of random time (Volume I, Chapter I, Section 1,
Defimtion 14) Let {&. te T} be a current of o-algebras A function 7= f(w),
we 0, < N, with values in T 15 called a random ume on {¥, t € T} or an F,-random
ume if {r<t}eF forallteT
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In what follows we shall discuss only those random times which are defined on
the whole space £2( (12, = (1)

A o-algebra of events ¥, generated by events up to ime 7 which is called a
o-algebra corresponds to each random time r This o-algebra consists of events
B € S such that

Bnirsiled, YteT

It 1s easy to verify thatif 7, < 7, then ¥, < §,. (Volume I, Chapter I, Section 1)
In Volume I, Chapter 11, Section 2 (p 55) the following result was proved

Lemma 1. Let T be a firute set, 7, k =1, 5, be a sequence of random times on
{&. t € T} defined on the whole space 2 and such that 1y <71,<-- <7, and let
&% =&.. be a o-algebra generated by the random nme v (k=1, . ,s) If
{€(1), &+ 1€ T} s a supermartingale (martingale) then {£(7y), XE k=1, ..,s)1s
also a supermartingale (martingale)

We now generalize this result to the case of semmartingales considered in this
section

Let {£(2), &, t € T} be a supermartingale satisfying the condition: an integrable
random variable n exists such that

(10) E)=E{n|3.}

Consider a random time 7 taking on values 1n T and also possibly the value
t=o00 Set
gw = 0'{0'(’7 )7 ’(}h te [0' cn)})
¢ - {f(t) forv=¢4teT,
" for =00,

The random vanable £, 1s ¥,-measurable. Indeed, 1n the case of a disc cte time,
this assertion was proved earlier, in Volume I, Chapter I, Section 1, Lemma 5. For
T = [0, o) the proof 1s as follows.

Proof Introduce discrete approximations of the random time r by setting 7™’ =
tk+1)/2"+f re(k/2", (k+1)/2"], "' = 0if = 0. The continuity from the right
of the sample functions of the process £(¢) implies that lim £(r,) = £(r) On the
other hand

{tM)<a}n{r<t}=tm {EE") < a}n{r™ <1}
For re (k/2", (k +1)/2"] we have

(M) <ayn (1™ <ibe Faanyor
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Thus
{5(7)< a}n{" < I}E %|+ = 8‘{-

Utlizing once again equality ¥, = ¥, we obtain
{e(r)<aln{r=red.
which implies that £(7) is %,-measurable. [

Theorem 6. Let supermartingale £(t) satisfy condition (10), let o and 7 be random
tumes with o <1 Then the varniables &, and &, are integrable and

(11) SRR ML

Proof First consider the case T=N. Let ox =0 Ak and 7. =7ak Set £(1)=
L)+ n(t), where 7(t)=E{n|%.}, £(t)=&(t)—n(t). Conditions of the theorem
imply that {(¢)=0 and, moreover, {(¢) is a supermartingale.

We shall start with the process {(t). Lemma 1 mmples that E{, <E&{,
Approaching the hmit as k - o0 and utilizing Fatou’s lemma we obtain

E¢. =€ lim {, <Efo

so that E{, <o
Now let B = §,. Then 1n view of Lemma 1

jBr\(‘r‘k) {T dP‘IBﬁ(G‘k} g" dstBn(a(k) gm‘ dP: IBn(a‘k} an dP

Taking into account that {, = {, = 0 for o = c0 and approachmg the limitask - <
in the obtained ielationships, we have

(12) [t dP=[g ¢, dP;
this yields the assertion of the theorem for the process {(¢).
We now consider process 7 (¢). This process is a uniformly integrable martin-
gate. Observe that
(13) Ne = E{"' Igl}'lsf = E{" l 87}
Indeed, if A€ F,, Ax=An{r=k}, k=0,1, .,n,..., o, then
;A,, TIrdP=IA. E{n |8‘k} dP:jA.: ndP.

Summing up these equalities over all the values of k, we obtain

famdP={,ndP.



