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Preface

This is an exciting nme o be working w the Held of adaptive control. Research in recent years
has led to the emergence of a wide spectrum of problems and the ficld is sufficiently mature to
attract theoreticians lookiog for an area in which nonlinear systems arise naturally. In additon.
the adaptive algorithms heing studied complement current computing technology resulting in a
powerful approach with great potential impact on the world of applications. Sophistica e, yet
practical, adaptive controllers are now feasible. For these reasons, it is not surprising that ag. puve
control has found a large following in all segments of the control community as a whole.

Three decades after the 1erm adapration was introduced into the engineering literature, i 1s
now generally realized that adaptive systems are special classes of nonlinear systems and hence
capable of exhibiting behavior not encountered in linear systems. The ditficulty experienced in
coming up with a universally acceptable definition of adaptive systems, as well as in generating
techniques for their analysis and synthesis, may be traced ultimately to this fact. It is well knowa
that design techniques for dynamical systems are closely related 1o their stability properties. Since
necessary and sufficient condittons for the stability of linear systems have been developed over thwe
past century, it is not surprising that well known design methods have been established for such
systems. In contrast to this, general methods for the analysis and synthesis of nonhncar systems
do not exist since conditions for their stability can be established only on a system by system
basis. To design tractable synthesis procedures, adaptive systems are structured in such a fashion
that their behavior asymptotically approaches that of linear systems. The central theme of thas
hook is stability of adapuve systems, and it is based on the conviction that adaptive systems can
be designed with confidence only when their global stability properties are well understood

In 1980, the stability problem of an idealized version of an adaptive system was resvived
and it has come to represent a landmark in the development of adaptive systems. Followie
this, in recent years, a multiplicity of ideas have been generaled in the field. The flood of new
information is so great that the beginner tends to be overwhelimed by the pumerous technigues
and perspectives adopted. The time appears to be appropriate 10 attempi a unified prescntation
of results that are currently welt known and to establish the close connections that exist between
seemingly independent developments in the field.

The entire book is written in a self-contained fashion and is meant to serve as i text book
on adaptive systems t the senior undergraduate or first-year graduate tevel. A knowledge of Hinew
algebra and differential equations as well as an acquaintance with basic concepts in linear systems
theory is assumed. The book can be used for an intensive one-semesler course, or a two-semesler
course with emphasis on recent research in the second semester. The problems included at the end
of the chapters should be considered as an integral part of the book. Following the approach used
by the authors while teaching this course at Yale, the problems are divided into three categories
I, II, and HII. Problems in Part I are relatively easy and are meant primarily to test the student’s
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xvi Preface

knowledge of mathematical prerequisites and systems concepts. Part H contains problems that can
be solved by the application of results derived in the chapters. Problems in Part HI are substantially
more difficult and occasionally include open questions in adaptive control for which solutions are
not currently available.

The book is arranged in such a manner that Chapters I-7 are accessible to the heginner while
Chapters 8-11 are meant for the more advanced, research-ariented student. A fairly extensive first
chapter sets the tone for the entire book. Besides introducing basic concepts, it also attempts lo
trace the evelution of the field to its present state from early approaches that were popular in
the 1960s. In particular, an effort has been made to delineate clearly the basis for many of the
assumptions that are made in the following chapters which are generally scattered in the technical
titerature. The authors believe that the importance of these ideas for a broad understanding of
the field justifies the unusual length of the introduction. Chapter 2 is devoted to a discussion of
results in stability theory with emphasis on those results which are directly relevant to the study of
adaptive systems. While Chapters 3-5 deal with the stability properties of adaptive observers and
controtlers, Chapter 6 introduces the important concept of persistent excitation. In Chapter 7 it is
shown that all the systems discussed in Chapters 3-6 can be analyzed in a unified fashion using
error models. Chapters 8-10 deal with areas where there has been intense research activity in the
last eight years and the final chapter contains five detailed case studies of systems where adaptive
control has proved successful.

Developments in the field of adaptive control have proceeded in a parallel fashion in both
discrete and continuous systems, and results in one area usually have counterparts in the other.
Many of the problems formulated using discrete or continuous time models can also be studied in
the presence of stochastic disturbances. This book deals with continuous time finite dimensional
deterministic systems. We believe that a thorough understanding of this class will provide the
essential foundation for establishing analogous resulis in both the discrete time and stochastic
cases.

It is our privilege to thank a long list of friends and colleagues who have helped us in the
preparation of the book in different ways. We are especially grateful to Petar Kokotovic for his
careful scrutiny of the first seven chapters and numerous valuable suggestions. We would also
like to thank Peter Dorato, Petros loannou, Robert Kosut, Gerhard Kreisselmeier, Steve Morse.
and R.P. Singh for their comments on portions of the manuscript and to Job van Amerongen.,
Dan Koditschek, Heinz Unbehauen, and Eric Ydstie for critically evaluating parts of Chapter 11.
Manuel Duarte and Jovan Boskovic took part in numerous technical discussions and Jovan's help
in collecting the material for Chapter 11 is particularly appreciated. Both of them worked very hard
toward proofreading the final manuscript. We are most grateful to them for their commitment to the
completion of the book. Finally, we would like to thank Eileen Bernadette Moran for encouraging
us to do this project with Prentice Hall, Tim Bozik. engineering editor, for his enthusiasm and
help. and Sophie Papanikolaou, production editor. for her remarkable efficiency.

The first author would like to thank his doctoral students in the area of adaptive control during
the period 1970-88. Many of the ideas in this book first appeared in papers that they coauthored
with him. The time spent with them was instructive, productive, and thoroughly enjoyable.

The second author gratefully acknowledges the IBM Corporation for awarding apostdoctoral
fellowship during her stay at Yale from 1985-87. This enabled her to devote her time fully to the
book. She wouid also like to thank Rose Schulz for her hospitality during the entire time the book
was in preparation.

Finally, without the patience and encouragement of Barbara Narendra and Mandayam Srini-
vasan, this book would not have been undertaken, nor completed.

Kumpati S. Narendra

Anuradha M. Annaswamy
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Introduction

1.1 INTRODUCTION

Questions of control in general and automatic control in particular, are ‘assuming major
importance in modem society even as social and technological systems are becoming
increasingly complex and highly interconnected. By “control of a process” we mean,
qualitatively, the ability to direct, alter, or improve its behavior, and a control system is
one in which some quantities of intgrest are maintained more or less accurately around
a prescribed value. Control becomes truly automatic when systems are made to be self-
regulating. This is brought about by the simple concept of feedback which is one of the
fundamental ideas of enginéering. The essence of the concept consists of the triad: mea-
surement, comparison, and correction. By measuring the quantity of interest, comparing
it with the desired value, and using the error to correct the process, the familiar chain of
cause and effect in the process is converted into a closed loop of interdependent events.
This closed sequence of information transmission, referred to as feedback, underlies the
entire technology of automatic control based on self-regulation. Although the existence
of self-regulating mechanisms in living organisms has been recognized for a long time
and the deliberate construction of self-regulating systems, such as float regulators and
water clocks can be traced back to antiquity [30], the abstract concept of the closed
causal loop is a distinct achievement of the twentieth century.

Up to the beginning of the twentieth century, automatic control remained a specialty
of mechanical engineering. This was followed by a period when electrical regulators
and controllers became quite common. About the 1940s, electrical, mechanical, and
chemical engineers were designing automatic control devices in their respective fields
using very similar methods arrived at by different routes and disguised under completely



2 Chap. 1 introduction

different terminologies. Although at first no connection between these developments was
recognized, it gradually became clear that the concepts had a common basis, and at the
end of World War 11, a theory that was mathematically elegant and universal in its scope
came into being. In 1948, Wiener named this newly founded discipline Cybernetics [43].
In the last forty years. feedback control has evolved from an art into a scientific discipline
which cuts across boundaries extending from design, development, and production on
one hand, to mathematics on the other. In fact, even about the early 1960s, Bellman
{6} felt that, having spent its fledgling years in the shade of the engineering world,
control theory had emerged as a mathematical discipline that could exist independent of
its applications.

The history of automatic control has witnessed a constant striving toward increased
speed and accuracy. World War II, with its need for fast and accurate military systems,
imparted a large impetus to the growth of the field. Frequency response methods were
developed based on the efforts of Black, Nyquist, and Bode in the design of electronic
feedback amplifiers. Using these methods, which are now classified under the rubric
of classical control, it was possible to carry out both analysis and synthesis of closed
loop systems in a systematic fashion based on open-loop frequency responses. In the
course of time, these methods formed the foundations of feedback control theory and
became ideally suited for the design of linear time-invariant systems. In the 1950s and
i960s, with developments in space technology, the feedback control problem grew more
complex. Stringent requirements of accuracy, weight, and cost of space applications
spurred the growth of new techniques for the design of optimal control systems. Models
with more than one dependent variable were common occurrences and ushered in the
era of multivariable control. Finally, the inevitable presence of noise in both input and
output variables called for statistical solutions for the estimation and control problems. .
and the field witnessed a merging of control techniques with those well established in
communications theory. The solution of the linear quadratic gaussian (LQG) regulator
problem-using the separation principle and the development of the Kalman filter became
landmarks in the field in the 1960s.

Even as greater efforts were made in the direction of precise control, finear models
were often found to be no longer valid and more accurate descriptions of the processes
were necessary. Simple models of the process had to be replaced by more complex
ones and uncertainties regarding inputs, parameter values, and structure of the systemn
increasingly entered the picture. Their. importance in the design of fast and accurate
controllers shifted attention in automatic control to new areas such as adaptive, self-
optimizing, and self-organizing systems.

1.2 SYSTEMS THEORY

A system may be broadly defined as an aggregation of objects united by some form of
interaction or interdependence. When one or more aspects of the system change with
time, it is generally referred to as a dynamucal system. The first step in the analysis
of any sysltem is to establish the quantities of interest and how they are interrelated.
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The principal concern of systems theory is in the behavior of systems deduced from the
properties of subsystems or eléments of which they are composed and their interaction.
Influences that originate outside the system and act on it so they are not directly affected
by what happens in the system are called /nputs. The quantities of interest that are
affected by the action of these external influences are called outputs of the system. As
a mathematical concept. a dynamical system can be considered a structure that receives
an input u(t} at each time instant ¢ where ¢ belongs to a time set 7 and emits an output
y(t). The values of the input are assumed to belong to some set I while those of the
output belong to a set }. In most cases the output y(¢) depends not only on u(t) but also
on the past history of the inputs and hence that of the system. The concept of the siate
was introduced to predict the future behavior of the system based on the input from an
initial time ¢.

The dynamical systems we will be concerned with in this book are described by
ordinary vector differential equations of the form

dath) = oty = flx(t). w().0.6) te R
“ {t.H
y(t) = hxit),6.1)
where
o) £ [y(b)..... zaWTER™ 8 2 [4,.....01T € R".
) £ . up®IF €RP. ity 2 (i) ym(IT € R™.

f and h are mappings defined as f : R" xR’ xR"xR"* - R"and 7 : R xR" xR" —
R™. The vector u is the input to the dynamical system and contains both elements that
are under the control of the designer and those that are not. The former are referred to as
control inputs. The vector x(t) denotes the state of the system at time ¢ and its elements
z;{t)z = 1,2,..., n) are called state-variables. The state r(t) at time ¢ is determined by
the state z(ty) at any time tg < ¢ and the input u defined over the interval {ty,t). The
output x(f) as defined by Eq. (1.1) is determined by the time ¢ as well as the state of
the system z(f) at time 1.

The state and output equations in Eq. (1.1), defining a given process, may be
considered as an abstract summary of the data obtained by subjecting the process to
different inputs and observing the corresponding outputs. Equation (1.1) is generally
referred to as the mathematical model of the process. Once such a model is available.
the emphasis shifts to the determination of a control function u which achieves the desired
behavior of the process. Many of the major developments in control theory during the
past two decades are related to this problem.

When the mappings f and h are linear, the system is said to be linear and may be
represented in the form!

i

I Af. tix + B(B, Hu

(1.2)

1]

y H(&.rt):r

!The functional dependence of variables on t is sometimes suppressed for simplicity of notation.



