

e,
S

The Design and -
~ Analysis of

Spatia] Data .

Structures

Hanan Samet
W&RSWY OF MARYLAND

v

ADDISON - WESLEY PL BLISHING COMPANY, INC.
- Reading, Massachusetts » Méhjo Park, Califomia * New York

Don Mills, Ontario ® Wokinghank, England ® Amsterdam

Bonn ¢ Sydney ¢ Singapore Tokyo ® Madrid ® San Juan

This book is in the Addison -Wesley Series in Computer Science
Michsgel A. Harrison: Consulting Editor

4
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of 8 trademark
claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value.
They have been tested with care, but are not guaranteed for any particular purpose. The publisher does not
offer any warranties or representations, nor does it accept any lispilities with respect the programs or '
applications. .

Library of Congress Cataloging-in-Publication Data

Samet, Hanan.
The Design and analysis of spatial data structures/by Hanan Samet.
p. cm
Bibliography: p.
Includes index.
ISBN 0-201-50255-0
1. Data structures (Computer science) 2. Computer graphics.

I. Tite. .
QA769.D35526 1989 89-30382
005.7'3—dc19 '
Reprinted with corections April, 1990 ‘

Copyright © 1990 by Addison-Wesley Pu ishing Company, Inc.

Al rights reserved. No part of this publication may be reproduced, stored in a retrieval system, of transmit-
ted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
priot written permission of the publisher. Printed in the United States of America. Published simultane-
ously in Canada. -

CDEFGHIJ-MA-S 10

Credits:
Thor Bestul created the cover art.

Gyuri Fekete generated Figure 1.16; Daniel DeMenthon, Figures 1.20, 1.21, and 1.23; Jiang-Hsing
Chu, Figures 2.48 and 2.52; and Walid Aref, Figures 4.38 through 4.40.

igures 1.1, 4.9, and 4.10 are from H. Samet and R. E. Webber, On emod'mg boundaries with quad-
trees, IEEE Transactions on Pattern Analysis and Machine Inselligence 6, 3 (May 1984), 365-369. © 1984
IEEE. Reprinted by permission of IEEE.

Figures 1.2, 1.3, 1.5 through 1.10, 1.12, 1.14, 1.25, 1.26, 2.3, 2.4, 2.18, 2.20, 2.30, 232, 2.53, 2.54,
2.57, 2.58, 3.20, 3.21. 4.1 through 4.5, 4.7, 4.8, 4.11, and 5.2 are from H. Samet, The quadtree and related
hicrarchical data structures, ACM Computing Surveys 16, 2 (June 1984), 187-260. Repninted by perrnission
of ACM.

Figures 1.4 and 5.6 are from H. Samet and R. E. Webber, Hierarchical data structures and algorithms
for computer graphics. Part I. Fundamentals, [EEE Computer Graphics and Applications 8, 3(May 1988),
48-68, © 1988 IEEE. Reprinted by permission of [EEE.

Figure 1.30 is from M. Li, W. 1. Grosky, and R. Jain, Normalized quadtrees with respect to transla-
tions. Computer Graphics and Image Processing 20, 1 (September 1982), 72-81. Reprinted by permission
of Academic Press.

Figures 2.7 and 2.10 through 2.15 are from H. Samnet, Deletion in two-dimensional quad trees, Com-
munications of the AGM 23, 12 (December 1980), 703-710. Reprinted by permission of AéM,

Figures 2.26 and 2.27 are from D. T. Lee and C. K. Wong, Worst-case analysis for region and partial

*yeyion scarches in multidimensional binary search trees and quad trees, Acta Informatica 9, 1(1977), 23-29.
Reprinted by permission of Springer-Verlag. -
Continued on p. 493

»-

~3 ‘ol

®i

- PREFACE

 Spatial data consist of points, lines, rectangles. regions, surfaces, and volumes. The
representation of such data is becoming increasingly important in applications in
tomputer graphics, computer vision, database management systems, computer-aided
design, solid modeling, robotics, geographic information systems (GIS), image pro-
cessing, computational geometry, pattern recognition, and other areas. Once an appli-
- cation has heen specified, it is common for the spatial data types to be more precise.
For example, consider a geographic information system (GIS). In such a case, line
data are differentiated on the basis of whether the lines are isolated (e.g., earthquake
faults), elements of tree-like structures {e.g.. rivers and their tributaries), or elements
of networks (e.g.. rail and highway systems). Similarly region data are often i.. the
form of polygons that are isolated (e.g., lakes), adjacent (e.g.. nations), or nested (e.g.,
contours). Clearly the variations are large.

Many of the data structures currently used to represent spatial data are hierarchi-
cal. They are based on the principle of recursive decomposition (similar to divide ¢
conquer methods [Aho74]). One such data structure is the quadtree (octree in three
dimensions). As we shall see, the term quadtree has taken on a generic meaning. In
this book, it is my goal to show how a number of hierarchical data structures used in
different domains are related to each other and to quadtrees. My presentation concen-
trates on these different representations and illustrates how a number of basic opera-
tions that use them are performed.

Hierarchical data structures are useful because of their ability to focus on the
interesting subsets of the data. This focusing results in an efficient representatif)n and’
in improved execution times. Thus they are particularly convenient for performing set
operations. Many of the operations described can often be performed as efficiently, or
more so, with other data structures. Nevertheless hierarchical data structures are
attractive because of their conceptual clarity and ease of implementation. In addition.
the use of some of them provides a spatial index. This is very useful in applications
involving spatial databases.

viti B PREFACE

As ar example of the type of problems to which the techniques described in this
book are applicable, consider a cartegraphic database consisting of a number of maps’

and some typical queries. The database contains a contour map, say at 50-foot eleva- -

tion intervals, and a land use map classifying areas according to crop growth. Gur
goal is to determine all regions between 400- and 600-foct elevation levels where
wheat is grown. This will require an intersection operation on the two maps. Such an
analysis could be rather cosily. depending on the way the maps are represented. For
example, since areas whene com is grown are of no interest, we wish to spend a
rainimal a:nount of effort searching such regions. Yet traditional region representa-
tions such as the boundary code {Free74] are ‘very local in application, making it
difficuli to avoid examining a com-growing area that meets the desired elevaticn
criterion. fn contrast, hierarchical representations such as the region quadtree are
more global in nature and enable the elimination of larger areas from consideration.

Another query might be to determine whether two roads intersect within a given
area. We could check them point by point; however, a ore =fAcient method of
analysis would be to represent them by a hierarchical sequence of enclosing rectangles
and to discover whether in fact the rectangles do overlap. If they do not, the search is
terminated. if an intersection is possiblé, more work may have o be done, depending
on which method of representation is used.

A similar query can be constructed for point data — for example, to detesmnine
all cities within SO miles of St. Louis that have a population in excess of 20.000.
Again we could check each city individually. However, using a representation that
decomposes the United States into square areas having sides of length 100 miies
would mear that at most four squares need to be examined. Thus California and its
adjacent saases can be safely ignored.

Finaiiy, suppose we wish to integrate our queries over 2 database containing
many diffeient types of data (e.g., peints, lines, areas). A typical query might be,
“Find ali cities with a population in excess of 5,000 people in wheat-growing regions
within 20 miles of the Mississippi River.” In this book we will present a number of
different ways of representing data so that such queries and other operations can be
efficiently processed.

This book is organized as follows. There is one chapter for each spatial data
type, in which 1 present a number of different data structures. The aim is to gain the
ability to evaluate thems and to determine their applicability. Two problems are treated
in great detail: the rectangle intersection probiem, discussed i ihe context of the
representation of collections of small rectangles (Chapter 3), and the point location
problem, discussed in the context of the representation of curvilinear data {Chapter 4).
A comprehensive treatment of the use of quadtrees and octrees in other applications in
computer graphics, image processing, and geographi¢ information systems (GIS) can
be found in [Same90b]. .

Chapter 1 gives a general introduction to the principle of recursive decomposi-
tion with a concentration on two-dimensional regions. Key properties, as well as a
historical overview, are presented.

PREFACE ! ix

Chapter 2 discusses hierarchical representations of multidimensional point data.
These data structures are particularly useful in applications in database management
systems because they are designed to facilitate responses to search queries.

Chapter 3 examines the hierarchical representation of collections of small rec-
tangles. Such data arise in applications in computationial geometry, very laige-scale
integrations (VLSI), cartography, and database management. Examples from these
fields (e.g., the rectangle intersection problem) are used to illustrate their differences.
Many of the representations are closely related to those used for point data. This
chapter is an expansion of [Same88a).

Chapter 4 treats the hierarchical representation of curvilinear data. The primary
focus is on the representation of polygonal maps. The goal is to be able to solve the
point location problem. Quadtree-like solutions are compared with those from com-
putational geometry such as the K-structure [Kirk83] and the layered dag |Edel86a].

Chapter 5 looks at the representation of three-dimensional region data. In this
case, a number of octree variants are examined, as well as constructive solid geometry
(CSG) and the boundary model (BRep). Algorithms are discussed for converting
between some of these representations. The represeniation of surfaces (ie., 2.5-
dimensional data) is also briefly discussed in this chapter.

There are a number of topics for which justice requires a considerably more
detailed treatment. However, due to space limitations, I have omitted a detailed dis-
cussion of them and instead refer interested readers to the appropriate literature. For
example, surface representations are discussed briefly with thiee-dimensional data in
Chapter 5 (also see Chapter 7 of [Same30b]). The notion of a pyramid is presented
only at a cursory level in Chapter 1 so that it can be contrasted with the Guadtree. In
particular, the pyramid is a multiresolution representation, whereas the quadtics is a
variable resolution representation. Readers are referred ic Tanimoto and Klinger
{Tani801 and the collection of papers edited by Rosenfeld [Rose83a} for a more
comprehensive exposition on pyramids.

Results from computational geometry, although related to many of the toplcs
covered in this book, are discussed only m the context of represeniations ior collec-
tions of small rectangles (Chapter 3) and “curvilinear data ¢ (Chapter 4). ior more
details on early work involving some of these and related topics, intcrested readers
should consult the surveys by Bentley and Friedman [Bent79b], Overmars [QOver88al,
Edelsbrunner [Edei84], Nagy and Wagle [Nagy79], Peuquet {Peug84!, Requicha
[Requ80], Srihari [Srih81], Samet and Rosenfeld [Same80d]., Samet [Same84b,
Same88a), Samet and Webber [Same88c, Same88d], and Toussaint [Tous80].

There are also a number of excellent texts containing material related to the
topics that I cover. Rosenfeld and Kak [Rose82a] should be consulted for an ency
clopedic treatment of image processing. Mantyld [M4nt87] has written-a comprehen-
sive introduction to solid modeling. Burrough [Burr86] provides a survey of geo-
graphic information systems (GIS). Overmars [Over83] has produced a particularly
good treatment of multidimensional point data. In a similar vein, see Mehlhom’s
{Mehl84} unified treatment of multidimensional searching and computationa:
geometry. For thorough introductions to computational geometry, see Preparata and

x PREFACE

- Shamos [Prep85] and Edelsbrunner [Edel87] (also see [Prep83, ORou88]). A broader
view of the literature can be found in related bibliographies such as the ongoing col-
lective effort coordinated by Edelsbrunner [Edel83c, Edel88], and Rosenfeld’s annual
collection of references in the joarnal Computer Vision. Graphics. and Image Pro-
cessing ie.g., [Rose88}).

Nevertheless, given the broad and rapidly expanding nature of the field, I am
bound ' have omitted significant concepts and references. In addition at times I
devote 1 disproportionate amount of attention to some concepts at the expense of oth-
ers. Tiis is principally for expository purposes; [feel that it is better to understand

“ some s uctures well rather than to give readers a quick runthrough of buzzwords. For
these in iiscretions, I beg your pardon and hope you nevertheless bear with me.

i+ approach is an algorithmic one. Whenever possible, I have tried to motivate
criticai steps in the algorithms by a liberal use of examples. I feel that it is of
paramount importance for readers to see the ease with which the representations can
be implemented and used. In each chapter, except for the introduction (Chapter 1), I
give at least one detailed algorithm using pseudo-code so that readers can see how the
ideas can be applied. The pseudo-code is a variant of the ALGOL [Naur60] program-
ming language that has a data structuning facility incorporating pointers and record
structures. Recursion is used heavily. This language has similarities to C [Kem78],
PASCAL [Jens74], salL [Reis76], and ALGOL w [Baue68]. Its basic features are
described in the Appendix. However, the actual code is not crucial to understanding
the techniques, and it may be skipped on a first reading. The index indicates the page
numbers where the code for each algorithm is found.

In many cases I also give an analysis of the space and time requirements of dif-
ferent data structures and algorithms. The analysis is usually of an asymptotic nature
and is in terms of hig O and Q notation [Knut76]. The big O notation denotes an
upper bound. For example, if an algorithm takes O(log,N) time, then its worst-case
behavior is never any worse than log,N. The Q notation denotes a lower bound. As
an example of its use, consider the problem of sorting ¥ numbers. When we say that
sorting 15 Q(N-log,N) we mean that given any algorithm for sorting, there is some set
of N input values for which the algorithm will require at least this much time.

At times 1 also describe implementations of some of the data structures for the
purpose of comparison. In such cases counts, such as the number of fields in a record,
are often given. These numbers are meant only to amplify the discussion. They are
not to be taken literally, as improvements are always possible once a specific applica-
tion is analyzed more carefully.

Each chapter confains a substantial number of exercises. Many of the exercises
develop further the material in the text as a means of testing the reader’s understand- .
ing, as well as suggesting future directions. When the exercise or its solution is not
my own, I have preceded it with the name of its originator. The exercises have not
been graded by difficulty. They rarely require any mathematical skills beyond the
undergraduate level for their soiution However, while some of the exercises are quite
straightforward, others require some ingenuity. Solutions, ‘or references to papers that

PREFACE |l xi

contain the solution, are provided for a substantial number of the exercises that do not
require programming. Readers are cautioned to try to solve the exercises before turn-
ing to the solutions. It is my belief that much can be learned this way (for the student
and, even more so, for the author). The motivation for undertaking this task was my
wonderful experience on my first encounter with the rich work on daia structures by,
+Knuth [Knut73a, Knut73b). '
. An extensive bibliography is provided. It contains entries for both this book and
" the companion text [Same90b]. Not all of the references that appear in the bibliogra-
phy are cited in the two texts. They are retained for the purpose of giving reader; the
ability to access the aptire body of literature relevant to the topics discussed in them.
Each reference is annotated with a key word(s) and a list of the numbers of the sec-
tions in wkich it is cited in either of the texts (including exercises and solutions). In
addition, a name and credit index is provided that indicates the page numbers in this
book on which each author’s work is cited or a credit is made.

-

ACKNOWLEDGMENTS

Over the years I have received help from many people, and I am extremely
grateful to them. In particular Robert E. Webber, Markku Tamminen, a .d Michael B.
Dillencourt have generously given me much of their time and have goi = over critical
parts of the book. 1 have drawn heavily or their knowledge of some of the topics
covered here. I have also been extremely fortunate to work witt Azricl Rosenfeld
over the past ten years. His dedication and scholarship have been 1 true inspiration to
me. Ideeply cherish our association.

I was introduced to the field of spatial data structures by Gary D. Knott who
asked “how to delete in point quadtrees.” Azriel Rosenfeld and Charles R. Dyer pro-
vided much interaction in the initial phase of my research. Those discussions led to
the discovery of the neighbor-finding principle. It is during that time that many of the
basic conversion algorithms between quadtrees and other image representations were
~ developed as well. I leamed much about image processing and computer vision from,
- them. Robert E. Webber taught me computer graphics, Markkn Tamminen taught me
solid modeling and representations for multiattnbute data, and Michael B Diilencourt -
taught me about computational geometry.,

During the time that this book was written, my research was supported. in part,
by the National Science Foundation, the Defense Mapping Agency, the Harry
Diamond Laboratory, and the Bureau of the Census. In particular I would I'ke to
thank Richard Antony, Y. T. Chien, Su-shing Chen, Hank Cook, Phil Emmerman, Joe
Rastatter, Alan Saalfeld, and Larry Tokarcik. I am appreciative of ther support.

Many people helped me in the process of preparing the book for publication.
Acknowledgments are due to Rene McDonald for coordinating the day-to-day matters

xii M PREFACE

of getting the book out and copyediting; to Scott Carson, Emery Jou, and Jim Purtilo
for TROFF assistance beyond the call of duty; to Marisa Antoy and Sergio Antoy for
designing and implementing the algorithm formatter used to typeset the algorithms; to
Barbara Burnett, Michael B. Dillencourt, and Sandra German for help with the index;
to Jay Weber for setting up the TROFF macro files so that I can keep track of symbolic
names and thus be able to move text around without worrying about the numbering of
exercises, sections, and chapters; to Liz Allen for early TROFF help; to Nono Kusuma,
Mark Stanley, and Joan Wright Hamilton for drawing the figures; to Richard Muntz
and Gerald Estrin for providing temporary office space and computer access at UCLA;
to Sandy German, Gwen Nelson, and Janet Salzman for help in initial typing of the
manuscript; to S. S. Iyengar, Duane Marble, George Nagy, and Terry Smith who
reviewed the book: and to Peter Gordon, John Remington, and Keith Wollman at
Addison-Wesley Publishing Company for their encouragement and confidence in this
project.

Aside from the individuals named above, | have also benefited from discussions
with many other people over the past years. They have commented on various parts
of the book and include Chuan-Heng Ang, Walid Aref, James Arvo, Thor Bestul,
Sharat Chandran, Chiun-Hong Chien, Jiang-Hsing Chu, Leila De Floriani, Daniel
DeMenthon, Roger Eastman, Herbert Edelsbrunner, Christos Faloutsos, George
(Gyuri) Fekete, Kikuo Fujimura, John Gannon, John Goldak, Erik Hoel, Liuging
Huang, Frederik W. Jansen, Ajay Kela, David Kirk, Per Ake Larson, Dani Lischinski,
Don Meagheér, David Mount, Randal C. Nelson, Glenn Pearson, Ron Sacks-Davis,
Timos Sellis, Clifford A. Shaffer, Deepak Sherlekar, Li Tong, Brian Von Herzen,
Peter Widmayer, and David Wise. 1deeply appreciate their help.

A GUIDE TO THE INSTRUCTOR

This book can be used in a second data structures course, one with emphasis on
the representation of spatial data. The focus is on the use of the principle of divide-
and-conquer for which hierarchical data structures provide a good demonstration.
Throughout the book both worst-case optimal methods and methods that work well in
practice are emphasized in conformance with my view that the well-rounded computer
scientist should be conversant with both types of algorithms. This material is more
than can be covered in one semester; but the instructor can reduce it as necessary. For
example, the detailed exampies can be skipped or used as a basis of a term project or
programming assignments.

The book can also be used to organize a course to be prerequisite to courses in
computer graphics and solid modeling, computational geometry, database manage-
ment systems, multidimensional searching, image processing, and VLSI design. The
discussions of the representations of two-dimensional regions in Chapter 1, polygonal
representations in Chapter 4, and most of Chapter 5 are relevant to computer graphics
and solid modeling. The discussions of plane-sweep methods and their associated
data structures s'ich as segment trees, interval trees, and priority search trees in Sec-
tions 3.2 and 3.3 and point Iocation and associated data structures such as the

PREFACE I xiii

K-structure and the layered dag in Section 4.3 are relevant to computational geome:ry.
Bucket methods such as linear hashing, spiral hashing, grid file, and EXCELL, in Sec-
tion 2.8, and R-trees in Section 3.5.3 are important in the study of database manage-
ment systems. Methods for multidimensional searching that are discussed include k—d
trees in Section 2.4, range trees and priority search trees in Section 2.5, and point-
based rectangle representations in Section 3.4. The discussions of the representation
of two-dimensional regions in Chapter 1, polygonal representations in Chapter 4, and
use of point methods for focussing the Hough Transform are relevant to image pro-
cessing. Finally the rectangle-representation methods and plane-sweep methods of
Chapter 3 are important in the field of VLsI design.

The natural home for courses that use this book is in a computer science depart-
ment, but the book could also be used in a curriculum in geographic information
systems (GIS). Such a course is offered in geography departments. The emphasis for
a course in this area would be on the use of quadtree-like methods for representing
spatial data.

CONTENTS

Preface

1

INTRODUCTION
1.1 Basic Definitions
1.2 Overview of Quadtrees and Ocltrees
1.3 History of the Use of Quadtrees and Octrees
1.4 Space Decomposition Methods
1.4.1 Polygonal Tilings
1.42 Nonpolygonal Tilings
1.5 Space Requirements

POINT DATA
2.1 Introduction
2.2 Nonhierarchical Data Structures
2.3 Point Quadtrees
2.3.1 Insertion

2.3.2 Deletion
2.3.3 Search
2.4 k-d Trees

2.4.1 Insertion
242 Deletion
2.43 Search
244 Comparison with Point Quadtrees
5 Range Trees and Priority Search Trees
.6 Region-based Quadtrees
2.6.1 MX Quadtrees
2.6.2 PR Quadtrees

N

vii

[I

10
16

26
32

43
44
46
48
49
54

68
73
77
80
80
85
86
Y,

xvi

I CONTENTS

2,63 Comparison of Point and Region-based Quadtrees
2.7 Bit Interleaving
2.8 Bucket Methods -
2.8.1 Hnerarchlcal Bucke! Methods
2.8.2 Nonhierarchical Bucket Methods
2.8.2.1 Linear Hashing
2.8.2.2 . Spiral Hashing
2.8.2.3 - Grid File:
2824: aE?(CELL

2.9 Conclusion

COLLECT’fONS OF SMALL RECTANGLES
3.1 Introduction
3.2 Plane-Sweep Methods and the Rectangle Intersection Problem
3.2.1 Segment Trees
3.2.2 Interval Trees
3.2.3 Priority Search Trees
- 3.2.4 Alternative Solutions and Related Problems
3.3 Plane-Sweep Methods and the Measure Problem
34 Point-based Methods
3.5 Area-based Methads
3.5.1 MX-CIF Quadtrees
: 35.1.1 Insertion
35.1.2" Deletion
3.5.1.3 _ Search
35.2 Muluple Quadtree Block Representations
153 R trees’ v

CURVILINEAR DATA ‘ :
+ Strip Trees, Arc, Trees, and BSPR
4 2 Methods Based bn the Region Quadtree
4.2.1 Edge Quadtrees.
4.2.2 Line Quadtrees
423 PM Quadtrees
423.1 The PM, Quadiree
4232 The PM, Quadiree
4233 The PM, Quadtree
4234 PMR Quadrees
4235 h
: 4236 = Maintaining Labels of Regions
424 Empirica) Comparisons of the Different
_ " Representations
4.3 Methods Rooted in thputational Geometry
4.3.1 The K-structuré

-

104
105
110
ill
116
117
125
135
141
147

153
155
158
160
165
171
174
178
186
199
200
202
206

213
219

227
228
235
235

o231

239
240
257
261
264
269
275

278
286
287

CONTENTS I xvii

43.2 Separating Chains and Layered Dags ' 293
433 Coemparison with PM Quadtrees 306
44 Cunclusion 312
S VOLUME DATA 318
S.1 Solid Modeling) 316
5.2 Region Octrees 318
5.3 PM Octrees 126
5.4 Boundary Model (BRep) 331
5.5 Constructive Solid Geometry (CSG) 338
5.5.1 (CSG Evaluation by Bintree Conversion 340
5.5.1.1 Algorithm for a Single Halfspace 341
5.5.1.2 Algorithm for a CSG Tree ’ 346
5.5.1.3 Incorporation of the Time Dimension 355
5.52 PM-CSG Trees 360
5.6 Surface-based Object Representations 365 -
5.7 Prism Trees ’ 370
5.8 Cone Trees _ 374
Solutions to Exercises m
Appendix: Description of Pseudo-Code Language 411
References 415
Name and Credit Index 465

Subject Index . a7

INTRODUCTION

There are numerous hierarchical data structuring techniques in use for representing
spatial data. One commonly used technique is the quadtree, which has evolved from
work in di.ferent fields. Thus it is natural that a number of adaptations of it exist for
each spatial data type. Its development has been motivated to a large extent by a
desire to save storage by aggregating data having identical or similar values. We will
see, however, that this is not alw-.ys the case. In fact, the savings in execution time
that arise from this aggregation are often of equal or greater importance.

In this chapter we start with a historical overvicw of quadtrees, including
definitions. Since the pnmary focus in this book is on the representation of regions,
what follows is a discussion of region representation in the context of different space -
decomposition methods. This is done by examining polygo-ial and nonpolygonal til-
ings of the plane. The emphasis is on justifying the use of a decomposition into
squares. We corclude with a detailed analysis of the space requirements of the quad-
tree representation.

Most of the presentation in this chapter is in the context of two-dimensional
regions. The extension of the topics in this chapter, ana remaining chapters, to three- .
dimensional region data, and higher, is straightforward and, aside from definitions, is
often left to the exercises. Nevertheless, the concept of an octrce, a quadtree-like
representation of three-dimensional regions. is defined and a brief explanation is given
of how some of the results described here are applicable to higher-dimensional data.

1.1 BASIC DEFINITIONS

: :
“First, we define a few terms with respect to two-dimensional d#ta. Assume the

“existence of an array of picture elements (termed pixels) in two dimensions. We use
~the term image to refer to the original array of pixels. If its elements are black or

~

2 1 1 INTRODUCTION

white, then it is said to be binary. If shades of gray are possible (i.e., gray levels), the
ithage is said to be a gray ~scale image. In the discussion, we are primarily concerned
with binary images. Assume that the image is on an infinite background of white pix-
els. The border of the image is the outer boundary of the square corresponding to the
array. B
Two pixels are said to be 4-adjacent if they are adjacent to each other in the
horizontal or vertical direction. If the concept of adjacency also includes adjacency at
a corner (i.e., diagonal adjacencies), then the pixels are said to be 8-adjacent. A sets
is said to be four —connected (eight —~connected) if for any pixels p, g in S there exists a
sequence of pixels p =pg,p), ', P.=¢q in Sp such that p,,, is 4-adjacent (8-
adjacent) to p;; 0Si <n. S :

A black region, or black four-connected component, is a maximal four-
connected set of black pixels. The process of assigning the same label to all 4-
adjacent black pixels is called connected component labeling (see Chapter 5 of
[Same90b]). A white region is a maximal eight —connected set of white pixels defined
analogousty. The complement of a black region consists of a union of eight-
connected white regions. Exactly one of these white regions contains the infinite
background of white pixels, All the other white regions, if any, are called holes in the
black region. The black region, say R, is surrounded by the infinite white region and &
surrounds the other white regions, if any. :

A pixel is said to have four edges, each of whlch is of unit length. The bound-
afy of a black region consists of the set of edges. of its constitient pixels that also
serve as edges of white pixels. Similar definitions can be formulated in terms of rec-
tangular blocks, all of whose pixels are identically colored. For example, two disjoint
blocks, P and Q, are said to be 4-adjacent if there éxists a pixel p in P and a pixel g inQ
such that p and ¢ are 4-adjacent. Eight-adjacency for blocks (as well as connected
component labeling) is defined analogously

12 | OVERVIEW OF quabmess AND OCTREES

The term quadiree is used to describe a class of hierarchical data structures whose
common property is that they are based.on the priniciple of recursive decomposition of
space. They can be differentiated on the following bases:

1. The type of data they are used to repreéem
2. The principle guiding the dccomposmon proccss
3. The resoiution (variable or no!)

Currently they are used for point data, areas, curves, surfaces, and volumes.
The degopposition may be into equal parts on each level (i.e., regular polygons and
termed a regular decomposition), or it may be governed by the input. In computer
graphics this distinction is often phrased in terms of image-space hierarchies versus
object-space hierarchies, respectively [Suth74]. The resolution of the decomposition

1.2. OVERVIEW OF QUADTREES AND OCTREES | 3

O
=]
=
=
=

(=)

olololo]c
=
o

7890 BI6ITEe

F)’gure 1.1 An example of (a) a region, (b) its binary aﬁay,
(c) its maximal blocks (blocks in the region are shaded), and
(d) the corresponding quaditree

e e

(i.e., th. number of times that the decomposition process is applied) may be fixed
beforehand, or it may be governed by properties of the input data. For some applica- -
tions we can also differentiate the data structures on the basis of whether they specify
the boundaries of regions (e.g., curves and surfaces) or organize their interiors (e.g.,
areas and volumes). ‘ : '

The first example of a quadtree representation of data is concerned with the
representation of two-dimensional binary region data. The most studied quadiree
approach to region representation, called a region quadtree (but often termed a quad-
tree in the rest of this chapter), is based on the successive subdivision of a bounded
image array into four equal-sized quadrants. If the array does not consist entirely of
Is or entirely of Os (i.e., the region does not cover the entire array), then it is subdi-
wvided into quadrants, subquadrants, and so on, until blocks are obtained that consist
entirely of 1s or entirely of Os; that is, each block is entirely contained in the region or
entirely. disjoint from it. The region quadtree can be characterized as a vanable reso-
lution data structure. . :
' As an example of the region quadtree, consider the region shown in Figure 1.1a
represented by the 2% x 2° binary array jn Figure 1.1b. Observe that the 1s correspond
to picture elements (i.e., pixels) in the region, and the 0s correspond to picture ele-
mehts outside the region. The resulting blocks for the array of Figure 1.1b are shown
in Figure 1.1c. This process is represented by a tree of degree 4 (i.e., each nonleaf
node has four sons).

4 1 1 INTRODUCTION

In the tree representation, the root node corresponds to the entire array. Each
son of a node represents a quadrant (labeled in order NW, NE, SW, SE) of the region
renfeserded by that node. The leaf nodes of the tree correspond to those blocks for

-~ which no further subdivision is necessary. A leaf node is said to be black or white
d:pending on whether its corresponding block is entirely inside (it contains only 1s) op

* entirely outside the represented region (it contains no 1s). All nonleaf nodes are said

" to be gray (i.e., its block contains Os and 1s). Given a 2" x 2" image, the root node is
said to be dt level n while a node at level O corresponds to a single pixel in the image.!
The region quadtree representation for Figure 1.1c is shown in Figure 1.1d. The leaf
nodes are labeled with numbers, while the nonleaf nodes are labeled with letters. The
levels of the tree are also marked.

Our definition of the region quadtree implies that it is constructed by a top-down
process. In practice, the process is bottom-up, and one usually uses one of two
approgches. The first approach {Same80b] is applicable when the image array is not
too large. In such a case, the elements of the array are inspected in the order given by
the labels on the array in Figure 1.2 (which corresponds to the image of Figure 1.1a).
This order is also known as a Morton order {Mort56] (discussed in Section 1.3).- By
using such a method, a leaf node is never created until it is known to be maximal. An
equivalent statement is that the situation does not arise in which four leaf nodes of the
same color necessitate the changing of the color of their parent from gray to black or
white as is appropriate. (For more details, see Section 4.1 of [Same90b).).

The second approach [SameR1a] is applicable to large images. In this case, the
elements of the image are processed one row at a time—for example, in the order
given by the labels on the array in Figure 1.3 (which corresponds to the image of Fig-
ure 1.1a). This order is also known as a row or raster-scan order (discussed in Section
1.3). A quadtree is built by adding pixel-sized nodes one by one in the order in which
they appear in the file. (For more details, see Section 4.2.1 of {Same90b}.) This pro-
“ ess can be time-consuming due to the many merging and node insertion operations

~ that need to take place.

The above method has been improved by using a predictive method {Shaf86a,
Shaf87a], which only makes a single insertion for each node in the final quadiree and
performs no merge operations. It is based on processing the image in row order (top
to bottom, left to right), always inserting the largest node (i.e.. block) for which the
current pixel is the first (upper leftmost) pixel. Such a policy avoids the necessity of
merging since the upper leftmost pixel of any block is inserted before any other pixel
of that block. Therefore it is impossible for four sibling nodes to be of the same color.
This method makes use of an auxiliary array of size Q(2") for a 2" x 2" image. (For
more details, see Section 4.2.3 of [Same90b].)

The region quadtree is easily extended to represent three-dimensional binary
réginn data and the resulting data structure is called a region octree (termed an octree

.

oot

't Altematively we can say that the root node is at depth 0 while a node at depth n corresponds to a single *
pixel.in the image. In this book both concepts of level and depth are used to describe the relative position of
nodes. The one that is chosen is context dependent. :

