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PREFACE

This volume contains the lecture notes prepared by six speakers for
the Americen Mathematical Society Short Course on the Mathematics of Infor-
mation Processing given in Louisville, Kentucky, January 23-24, 1684, The
Short Course Advisory Subcommittee of the AMS approved this concept and
recomnended publication of these lecture notes.

The Mathematics of Information Processing 1s not a single topic but
rather a collection of methodologies whose end-goal is the creation of
automated information systems.

The viewpoint represented here is largely that of American researchers
with heavy emphasis on the mathematical problems of database systems and
communication networks. This reflects the rapid introduction of the products
of information technology in the workplace and in the home. By way of con-
trast a systems-theoretic approach developed in the Soviet Union is included
which also provides a self-contained background should the reader care to
probe more deeply into the subject.

The idea for the Short Course arose while one of us (Anshel) was a
NASA-ASEE Summer Faculty Fellow at Goddard Space Flight Center, NASA, There
vwe learned of a proposed futuristic information system, IESIS (Entelligent
Earth Sensing Information System). The real-world implementation of the
Short Course rested on the shoulders of the practitioner among us (Gewirtz)
who also chaired a lively panel discussion with a gurprise guest (Bob Targan).

We would like to thank the speakers for their efforts in the preparation
of these lectures and their patience concerning the idiosyncracies of the
co-director.

Finally we also wish to thank Stefan Burr who acted as wise counsel and

enthusiastic supporter.

Michael Anshel William Gewirtz
City College of the ATT Communications
City University of New York Basking Ridge, New Jersey'
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Diameters Of Communication Networks

F.R. K. CHUNG*

ABSTRACT. when graphs are used to model the linkage structure
of communication networks, the diameter of the graph corresponds to the
maximum number of links over which a message between two nodes must
travel. In cases where the number of links in a path is roughly
proportional to the time delay or signal degradation encountered by
messages sent along the path, the diameter is then involved in the
complexity analysis for the performance of the networks. A variety of
interrelated diameter problems will be discussed here,
including: determining extremal graphs of bounded degrees and small
diameters, finding orientations for undirected or mixed graphs to
minimize diameters; investigating diameter bounds for networks with
podsible node and link failures, and algorithms aspects for determining the

diameters of graphs.

1. Introduction. Modern communication networks typically are
highly complex structures formed by various interconnected components.
Many principal characteristics of communication networks often result from
the topology of the underlying connection patterns of the network. Graph
theory can then be used to study the linkage structure of the network and
to model problems arising in the optimization and analysis of the networks,
(see [11]).

A graph G consists of a finite set V(G) of vertices (or nodes) together with
a prescribed set E(G) of unordered pairs of vertices of V(G). The vertices
represent objects in a network and the pairs, called edges (or links)
represent the interconnections between objects. We' note that the exact
geometric positions of the vertices or the lengths of the edges are not
important unless specified.

* 1080 Mathemalics Subject Classification 05, 94C15.
Bell Commuanications Research, Morristown, New Jersey 07960.
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2 F. R. K. CHUNG

For two vertices v and v in a graph G, a path P of length t from u to v is
a sequence of distinct vertices ¥ = ag,e;, . . . , 8 = v, together with edges
{g;,8;,4+1},i =0, ... ,t—1,in G. A graph is said to be connected if every
pair of vertices are joined by a path. In a connected graph G, the distance
de(u,v} between two vertices u and v is the length of a shortest path
joining ¥ and » in G. The diameter D(G) of G is the maximum value of
dg(u,v), taken over all pairs of vertices u,veV(G) (see Fig. 1).

FIGURE 1

In the graph model for communication networks, the diameter of the graph
corresponds to the maximum number of edges over which a message
between two nodes must travel. In cases where the number of edges in a
path i= roughly proportional to the time delay or. signal degradation
encountered by messages sent along the path, the diameter is directly
involved in the analysis and the optimization of the networks. In
particular, diameter-related problems often arise in connection with
analyzing the computational complexity of routing, distributing and
scheduling algorithms.

Before we proceed to several interrelated diameter problems, we will first
introduce some definitions.*

For a given graph G, a subgraph G’ of G is given by taking V(G') C V(G)
and E(G) C E(G). A maximum connected subgraph of G is called a
connected component of G. A bridge of a connected graph G is an edge
whose removal disconnects G. If G has no bridge, it is called bridgeless.

In a graph G, a path is formed by a sequence of distinct vertices
dp,8y, . . - , 4, together with edges {a;,6;+1},¢ =0,.,t—1. A cycle is
formed by a path ag, .. .,a, together with the edge {4,,a0}. An acyclic

*  For undefined graph-theoretic terminology, the reader is referred to [2, 15, 33|.



el e

v

Diameters of Communications Networks 3

connected graph is called a tree. For a vertex v in G the degree of v,
denoted by degg(v), is the number of edges {¢,v} in G which contain v.
These u’s are called the neighbors of v. We note that the maximum degree
of a graph is also a useful parameter in network optimization since
practical networks commonly satisfy some degree constraints. We will
discuss extremal graphs with small diameter and bounded degrees in
Sections II and III.

In cases that some links only allow one-way traffic in' communication
networks we will then consider directed graphs or mixed graphs. A directed
graph G is formed by a vertex set together with a prescribed set of ordered
pairs of vertices. The edge set of a mixed graph contains ordered and
unordered pairs of vertices. Note that both undirected and directed graphs
are special cases of mixed graphs. We shall denote an edge with end
vertices ¢ and v,, by [u,v] if it is either undirected or directed from u to v.
Similarly we define paths and connectivity in mixed graphs. A path P in G
from u to v is a sequence of distinct vertices « = aga,, . . ., a = v so that
[6;,8;44],§ = 0,...,t—1, are edges in G, and P is called a walk if a;'s are not
necessarily distinct. G is strongly connected if every pair of vertices is
joined by a path. An orientation of a mixed graph G is any directed graph
obtained by directing every undirected edge in G. @ is orientable if there
is an orientation of G which is strongly connected. In Section IV we will
discuss the problem of choosing orientations of a mixed graph subject to
minimizing the diameter in the resulting directed graphs.

In Section V we will consider diameter problems associated with networks
having possible link or node failures. We will study extremal problems for
fault-tolerant graphs with small diameters and investigate the diameter
bounds in general graphs while a small number of vertices or edges are
deleted. In Section VI we will discuss fast algorithms for finding the
diameter of a graph. Many unresolved problems will be mentioned.

2. Large graphs with bounded degree and diameter.
The following problem has been studied by many researchers in the past
(see [3, 4, 5, 6]):

How many vertices can a graph have which has diameter D and degree at
most, k?

This problem can be viewed as a network optimization problem of
connecting as many processors as possible while each processor has a
bounded number of ports (degree constraint) and the delay in data
transmission is small (diameter constraint). The maximum number n(k,D)
of vertices in a graph with diameter D and maximum degree k is bounded
above by '

n(k,D)<1+k+ - - - +k(k—1)P! = ny(k,D)
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since there are at most k(k—1)'"! vertices at a distance ¢>1 from a vertex.
The upper bound ny(k,D), called Moore bound, is provably unreachable (34]
for almost all nontrivial values of ¥ and D. The only graphs, called Moore
graphs, which achieve the Moore bounds must be one of the following [34]:

(i) D=1, {(k+1)-cliques
(ii) k=2, (2D+1)-cycles
(iii} D = 2 and k = 3, the Petersen graph
(iv)] D =2 and k =7, the Hoffman-Singleton graph
(v) (possibly) D = 2 and k = 57.

Problem 1 [34]: Is there a Moore graph of diameter 2 and degree 577
Best known lower bound for n(k,D),k,D<10 can be found in Table 1 (see

[7]).

D 2 3 4 5 8 7 8 9 10

k
3 10 20 38 70 128 180 286 462 708
4 15 40 95 364 731 856 1872 3708 7100
5 2 66 174 532 2734 2988 7600 11340 30240
6 321 105 320 820 1817 12285 21840 65520 185640
7 50| 122 480 1550 10548 35154 78120 281232 1218672
8 57 | 200 807 2652 39223 66402 175770 749952 3656016
9 741 585 | 1248 5150 74806 215688 588240 | 2941200 15686400
10 91{ 650 | 1755 8400 | 132869 486837 | 1348164 7489800 47059200
i1 94 | TI5 | 3200 12285 | 156864 863580 { 2790060 | 16852050 | 120969030
12 133 780 ] 4680 | 18860 | 354323 | 1527890 | 4782960 | 36270780 | 326835600
13 138 | 845 | 6560 | 33345 | 531440 | 2657340 | 9920736 | 72541560 | 581071680
14 183 { 910 | 8200 | 42705 | 804481 | 4783212 | 18601380 | 145090764 | 1556138804
15 186 | 1215 { 11712 | 55062 | 1417248 | 6837978 | 28960848 | 282740976 | 2355482304
16 197 | 1600 | 14640 | 132496 | 1771560 | 11664786 | 54301590 | 481474098 | 5743901520

TABLE 1

For the upper bound the only result beyond n(k,D)<ny(k,D) (except for (i)-
(v)) was obtained by P. Erdéds, S. Fajtlowicz and A. J. Hoffman [27] who
proved that

n(2k,2)<ny(2k,2)-2 for k > 1.
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Problemn 2 (12, 26]: Is it true that for every integer ¢ there exist k¥ and D
such that

n(k,D) <ni{k,D)—

There are two different approaches for establishing the.lower bounds for
n(k,D): explicitly construct such a good graph or prove by probabilistic
methods the existence of a good graph. For practical concern the f{irst
approach is much more desirable although the second often gives better
bounds (so far).

Many of the explicit constructions are extensions or modifications of the
de Bruijn graphs. Here we describe briefly the structure of de Bruijn
graphs.

For given integers r and s and r > 3, the de Bruijn graph B(r,s) has s"
vertices represented by r-tuples (aja, ...,e,), where a;e{1,.,5} and
(en,8q . .., a,)is adjacent to (ag, . . ., e,,b) and (b,ay, . . ., a,_,) for any
be{l,...,s}. It is easily seen that B(r;s) has diameter r and degree 2s. This
gives
tp = lizn_..:;zp -n—o((-%%))- > 270

For some small fixed values of D, the ratio of n(k,D) and ny(k,D) can be
arbitrarily close to one for sufficiently large & due to the explicit
construction of large classes of graphs using combinational structures such
as generalized n-gons and product constructions (see [2,5]), which we will
describe.

A generalized polygon can be viewed as a bipartite graph G with vertex set
PUL having the property that for any two vertices x,y of distance d(z,y} <
diameter (G), there is a unique path of length d{z,y) joining z and v.
Elements in P and L will be called points and lines, respectively, and we
say zeP belongs to (or is incident with) leL il and only if (z,{) is an edge in
G.

If the degree of each vertex of G is at least 3 and the diameter is n, G is
called a thick generalized n-gon. It turns out that any two vertices in P
have the same degree and any two vertices in L have the same degree. We
say the generalized n-gon has parameter (s,t) if every line contains s+1
points and-every point is contained in ¢-+1 lines. A theorem of Feit and
Higman [29] states that thick generahzed n-gons only exist for n =2346
and 8.

For example, the graphs. of generalized 2-gons are precisely the complete
bipartite graphs. The thick generalized 3-gons are the nondegenerate
projective planes wmh g°+g+1 points and lines where ¢ is a prime power
(see [36]).
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Generalized 4-, 6-, and 8-gons are known as generalized quadrangles,
hexagons, and octagons, respectively. There are several types of generalized
quadrangles, namely, the classical polar spaces Sp (4,q), 07(6,9) and U(5,¢%)
where ¢ is a prime power. These constructions are rather complicated (the
reader is referred to [36,48,49]). There are two known types of generalized
hexagons Gy(q) and 3D,(g®) {see 36,48] and one generalized octagon 2F(q)
which requires q to be an odd power of 2 (see [36,52]).

Now for a bipartite graph G with vertex set PUL, the self product G? has
vertex set PXL={(p,l):peP,eL} while (p,) is adjacent to (p,f) if p is
contained in ¢ and p' is contained in €. It is not difficult to check that G?
has diameter one less than the diameter of G and G is regular of degree
koko if vertices in P have degree k; and vertices in L have degree ky in G

(see [5]).

Now suppose we consider the generalized octagon 2F,(¢q) which has diameter
8 with parameter (g,9%) and contains (14+0(1))¢!° points and (1+0(1))g"
lines. The self product of 2F°,(¢) has then (140(1))g?! vertices with diameter
7 and maximum degree (14+0(1))¢®. As an immediate consequence, we have

n(k,7) =1
ng(k,7)

Although these methods were known in the proofs of pg = p; = 1. Bert
Wells first proved this fact about ;. Also, he pointed out that by using the
following inequality derived by Delorme in [24]

By = 2pDP(D+1)71PH),

By = lim sup
k-—s00

one gets ug > 2-7787 % uy > 4:7°97° and p, > 8771071

Here are best known lower bounds for up, for D<10,

D lil2]|sl 4 |s| 6 |7 8 | 9o | 10
pp Vel 1327 [ 1]25%6¢01 (27788 4779|5210
Using probabilistic approaches B. Bollobas and W. F. de la Vega [14]

obtained a much stronger lower bound: n{k,D) > —_—t k,D) for
8 (5:D) 2 o (k—1) ol.D)

some constant c.

The directed analogue of this problem turns out to be much more tractable.
We can define the maximum number n(k,D) of vertices in a directed graph
of outdegree < k and diameter D. Then n{k,D) must satisly

n(k,D) < 1+k+k*+.. +kP = ny(k,D).

In 1974, Plesnik and Znam [43] showed that the directed Moore bound
no(k,D) is not achievable for k,D > 1, which was rediscovered later in [186].
On the other hand, Kautz in 1968 (see [16]) gave a construction of a
directed graph on kP+kP=! vertices with outdegree k and diameter D,

T NLl59)
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which again was rediscovered in [44].

Problem 3 [16]: Determine the exact values for n(k,D).

3. Sparse graphs with bounded degree and diameter. P.

Erdés and A. Renyi [25] asked the following question in 1962:

Suppose there are n cities such that the airport of each city can handle at

most k flights. It is desirable to schedule the flights in such a way that

- from each city it is possible to fly to another city with at most ¢ stops along
the way. What is the minimum number of flights which must be set up to
satisfy the stated requirements? In other words, what is the least number
¢(n,k,D) of edges in a graph with n vertices having degree at most & and
diameter at most D where D = t41?

&

| The above simple-looking problem turns out to be unexpectly difficult.
' Relatively few exact values for ¢(n,k,D) are known so far except for some
of the cases with D< 3. Some partial results and estimates were obtained
in the past [12, 25, 28] and numerous questions still remain unresolved.

In Fig. 2 we illustrate the extremal graph G with n vertices having
diameter 2, degree <k, (2n-2)/3 < k < n—5, and ¢(n,k,2) = 2n—4 edges
(see [12,25)).

FIGURE 2

Known exact values for ¢(n,k,d) are (see [25, 26], also see (12]) ;

!
!

e e T o



8 F. R. K. CHUNG

n-1 ifk=n-1
n+k—2 fk=n-20r n-3
2n-5 ifk=n-—4
e(n, k,2)= |2n—4 if (2n—2)/3 <k<n-5
{3n—k—6 if 32=3 <} 2022
5 = 3
5n—dk—10 if 223 <4 In=3
dn—2k-11 if 2L <z <""‘9"3

\

e(n,k,3)=n+(g)—l if [n/(e+1)]4+s-1<k<[n/s]+8-2 and 1<s<
[(n/2)'14.

J. Pach and L. Suranyi [40] proved that e(n,cn,2)/n tends to a limit g(c)
for n large and any fixed ¢ between 0 and 1. The function g{¢) is a
piecewise linear function except at a sequence of "turning" points. The
values of g(¢) can be determined using linear programming for any fixed ¢.

For D> 3, a lower bound for ¢(n k,D) is obtained in [26]:

nz
oo (1=(n/E0)E).

¢(n,k,D) 2

It is also proved in [22] that

1
\

e(n+p,k,114+2) < e(n k,D)+p

)

for 0 < p < kn-2¢(n,k,D).

Problem 4: What is the least num ‘3 r ¢(n,k,D) of edges in a directed graph
with n vertices having diameter 1} and degree (the sum of indegree and
outdegree) < kf i

Clearly, Z(n,k,D) < 2¢(n [k/2].D).

G. Katona and E. Szemeredi [36] ,\wed that any directed graph with n
vertices, which does not contair an ’ ‘ eycle of length 2 and has diameter 2,
must have at least n log, n edges ai ¢ that is the best possible. We can ask
analogous questions for directed gr ihs with degree constraints and other
constraints as well, for example, ha- ! ‘ g no small cycles.
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4. Orientations of mixed graphs with small diameters.
In 1939 H. Robbins {45] asked the following question: "When is it possible to
find an assignment of one-way directions for all the streets in a town while
preserving the property that it is possible to reach any point in town from
any other point?“.

He solved [45] this problem by proving an (undirected) graph is orientable if
and only if it is connected and has no bridge. F. Boesch and R. Tindell [8]
considered the more general case for a town in which some, but not all, of
the streets are already one-way streets. They proved (8] that a mixed graph
is orientable if and only if it is strongly connected and has no bridge.

J. A. Bondy and U. S. R. Murty raised the problem of determining how
much the diameter can increase in the process of orienting edges while
preserving strong connectivity. V. Chvatal and C. Thomassen [22]
subsequently proved that every bridgeless (undirected) graph of diameter D
admits an orientation of diameter 2D%42D. On the other hand, they show
there is a bridgeless graph G of diameter D with the property that any
orientation of G has diameter at least D?/44-D (see Fig. 3 for the case of
D=4).

RGIXS

/'

Figure 3

Let £f(D) denote the least number such that any bridgeless graph of
diameter D admits an orientation of diameter < (D). Therefore we have



10 F. R. K. CHUNG

D%*/44D < £(D) < 2D*+2D.

Question § [21]: Tighten the bounds for £(D).

In [22] Chvatal and Thomassen proved that the problem of deciding
whether an undirected graph admits an orientation of diameter 2 is NP-
complete. (The reader is referred to [32] for a discussion in NP-
completeness.)

Recently, M. R. Garey, R. T. Tarjan and the author studied the problem of
orienting all undirected edges in a mixed graph so as to minimize the
diameter. It can be shown [21] that if a mixed graph of diameter D has any
strongly connected orientation, then there is an orientation of diameter at
most 8D%4+4D. The proof gives a polynomial algorithm for constructing
such an orientation. Suppose we define ¥(d) similarly for the case of mixed
graphs. Then we have

D?*/44D < (D) < 8D%4+4D"

Question 6: Improve bounds for £(D).

5. Diameter bounds for altered graphs. K. Vijayan and U. S.
R. Murty [50] first investigated the following extremal problem which is
motivated by constructing optimal networks with diameter and reliability
considerations:

Determine the least number of edges for a graph on n vertices and diameter
D having the property that, if any ¢ edges (vertices) are deleted, thc
remaining graph has diameter no more than D'. Although this problem has
received much attention in the past (see the surveys {3, 6, 12, 19]), it seems
to be quite difficult in general, and relatively little is known beyond cases
with small values of ¢ and D (primarily ¢ = 1 and D< 5). We will just
mention the following intriguing problem:

Question 7 {12]; How many edges must a graph have so that after removing
any t edges it still has diameter <D?

Motivated it by the following examples B. Bollobas [12] conjectured that

such graph G must have (1+0(1))(n + l2Dn/3J) edges for the case ¢t = 1.

In particular he verified this conjecture for the case that G has diameter

< %D, before removing edges.
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d=3

FIGURE 4

For the analogue of vertex deletion, B. Bollobds conjectured that any graph
with n vertices must have at least (L+0(1))(n + ——) edges if it satisfies

Ld/2]

the property that after removing any edge the remaining graph has
diameter <D (see Fig. 5).

—e
—e

¢

FIGURE 5

Again he verified [12] the conjecture for the case that the graph starts with
diameter < D /2.

M. Garey and the author [20] recently studied the effect of edge or vertex
deletion on the diameter bounds for general graphs. Suppose we delete an
edge from a 2-connected graph, the new diameter can be twice as large as
the old diameter, (deleting an edge from a cycle, for example). It is not
difficult to prove that the maximum new diameter after deletion of an edge



