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Preface

This book is intended as a text for a one-semester second or third year
course on algorithms and data structures. It aims to present the central
topics of the subject, coherently organized, with emphasis more on depth
of treatment than on broad survey.

My motive in ¢choosing depth over breadth was a desire to involve
the student by making all the material fully accessible. For example, an
average complexity analysis is the best way to justify the use of Quicksort,
but since this is not easy to perform, some preparation in analysis
techniques is needed. Similarly, the correctness of Dijkstra’s algorithm is
not clear, and it requires a proof using loop invariants. Thus are we led
naturally to depth of treatment.

I have retained the traditional organization by application area for
most of the book (Chapters 6-10). This brings together aiternative
solutions to the various problems, and makes manifest to the student the
general scope of the subject in a way that a text structured around design
or analysis techniques cannot do. Chapters 1-4 are devoted to techniques:
correctness, analysis, the use of abstract data types, and algorithm design.

Finding the right level of treatment for correctness is difficult. Proofs
of correctness are essential for some of the graph algorithms of Chapter
10, and the presentation of even quite simple algorithms can be improved
by giving their loop invariants; but a formal treatment including predicate
transformers would easily fill an entire book. I have compromised, using
informal arguments to establish formal invariants, and including an
introductory chapter that could be assigned as reading.

By counting the number of times that a characteristic operation is
performed, the analyses give quite precise results, without excessive
detail. Amortized complexity, an unusual feature of this book, is the key
to some exciting new data structures — notably Fibonacci heaps, which
lead to an optimal implementation of Dijkstra’s algorithm.

Abstract data types have helped greatly in osganizing the subject
matter, both by classifying and specifying data structures, and by
removing them from the algorithms. They permeate the book, and there
are whole chapters devoted to the implementation of three important
ones: the symbol table, the priority queue, and the disjoint sets structure.
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For algorithm design, the usual list of strategies is presented, and the
reader is invited to consider applying each to the problem ai hand.
Backtracking and branch-and-bound have been ornitted, since they are
most often applied to NP-hard and artificial intelligence problems that hie
cutside the scope of this text.

As 1 wrote this book, I perceived a necd for a more systematic
classification of iterative algorithms than is usually given. To this end, I
have identified two distinctive kinds of loop invariant, the first occurring
in such trivial algorithms as summing an array and insertion sort, and the
second in more subtle algorithms, including the greedy algorithms. This
classification is presented in Section 4.2,

The book is entirely self-contained in its treatment of correctness,
analysis of algorithms (except basic probability theory), data abstraction,
and algorithm design. Some knowledge of the kind usually imparted in
a second programming course is assumed: familiarity with a Pascal-like
programming language, linked structures, and recursion.

Executable Modula-2 code is given in nearly all cases; it has been
compiled and tested. The major technical issue in choosing a program-
ming language for presenting this material must be the degree of support
provided for data abstraction. Modula-2 has the necessary modules and
opaque types; regrettably, the absence of type inheritance, generic
modaules, procedure name overloading, and function value dereferencing
leads to some loss of generality or readability in some programs.

Specific attributions are given throughout the text. More generally, I
am indebted to a number of previous authors, especially to Aho et al.
(1983) for my choice of subject areas, as well as many of the individual
topics; to Tarjan (1983), whose monograph provided a model for my
organization, and some of its most interesting material; and to Knuth
(1973a, b) for general inspiration, as well as most of the analyses in
Chapters 5-8.

Several people generously gave their time during the development of
the book at Sydney University. Greg Ryan carefully read the manuscript;
Stephen Russell and John Gough assisted with Modula-2; and Bryden
Allen, Greg Butler, Norman Foo, and Alan Fekete gave reviews and
advice. My thanks also to my thesis supervisor, Allan Bromley, for his
encouragement over thé years.

This book has grown from courses taught while visiting the
University of lowa in 1984-7, and, in a general way, owes much to my
colleagues there, especially Donald Alton, Keith Brinck, and Douglas
Jones, and to the congenial environment I found at Iowa. Accordingly, I
dedicate the book with gratitude to my many American friends.
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Chapter 1

Algorithm Correctness

There are several good reasons for studying the correctness of algorithms,
for example. to improve the quality of the programs we write. or of the
languages we use. But the reasons for doing it here. in this book, are as
follows.

First. some algorithms are so mysterious as to defy intuition. To
understand these algorithms formal methods must be used.

Second. although it is true that every algorithm depends for its
correctness on specific properties of the problem at hand. there must also
be a strategy for putting those properties to work. To prove an algorithm
correct is to reveal this strategy: it can then be used in comparisons with
other algorithms. and in the development of new algorithms.

The study of correctness. as we will go about it. is known as
axtomatic semuniics. and it is principally owing to Flovd (1967) and
Hoare (1969). It is possible. using the methods of axiomatic semantics, to
prove that a program is correct as rigorously as one can prove a theorem
in logic, This will not be attempted here. because it is an entire subject in
itself (Dijkstra. 1976: Gries. 1981): instead. a less rigorous approach wil!
be taken which is compatible with the fully rigorous one. but which is
more appropriate to our aims of understanding. comparing. and develop-
ing algorithms.

1.1 Problems and Specifications

A probientts a general question 1o be answered. usually possessing several
paranicters A problem 1s specified by describing the form we expect the
parameters to take and the question we ask about them. For example. the
munentent-finding problentis “Sis a set of numbers. What is a mimimum
clement ot 877 It has one parameter. §.
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An instance of a problem is an assignment. of values 1o the
parameters. For examplc, 'S = {5, 2. 6, 9}’ is an instancc of the minimum-
finding problem. , '

An algorithm for a problcin is a step-by-step procedure for taking
any instance of ‘the problem and producing a correct answer for that
instance. If several answers are equally correct, as often happens, the
algorithm is frce to produce any one. An algorithm is correct if it is
guaranteed to produce a correct answer to every instance of the problem.

Specifying a problem can be a difficult task in itself, because therc is
a need for great precision. For cxample, the empty set has no minimum
tlement, so the specification given above for the minimum-finding
problem is flawed. A good way to state a speciﬁcalion precisely is to give
two Boolean expressions, or conditions: the first, called the precondition,
states what may be assumed to be true initially; the second, called the
postcondition, states what is 10 be true about the result. For example, the
minimum-finding problem could be specified like this:

Pre: S is a finite, non-empty set of integers
Post: m is a minimum clement of S.

We could writc (there exists x € S such that m = x) and (for all xe S,
m < x) to express more formally what it means for m to be a minimum
element of S. By assuming that all instances are non-empty, we are saying
that we don’t carc what an algorithm for this problem does if it is given
the empty set. It is the user’s responsibility to supply only instances in
accord with the precondition.

1.2 Recursive Algorithms

Newcomers to recursion are often confused by the apparent circularity of
the method: to solve a problem, first solve the problem. But it is
misleading to view recursion in this way; rather, one instance is solved by
solving one or more different, and smaller, instances. When-proving that
a recursive algorithm finds the correct solution to some instance, we
therefore need to assume that it finds correct solutions to these smaller
instances, and this suggests immediately that we should use induction on
the size of the instance to prove correctness.

As a first example, consider the problem of calculating n!, whose
specification is

(* Pre: n is an integer such that n = 0 *)
x := Factorialn),
(* Post. x = n' *)
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The convention of including the conditions as comments in a program

fragment at the points where they should be true has been adopted. The
usual recursive algorithm for this problem is

procedure Factorial(n: integer): integer;

begin
if n = O then
return |;
else
return nxFactorial(n — 1),
end,

end Faclorial,

and its proof of correctness is as follows:

Theorem 1.1: For all integers n= 0, Factorial(n) returns n!.
Proof: by induction on n.

Basis step: 7 = 0. Then the test n = 0 succeeds, and the algorithm
returns 1. This is correct, since 0! = 1.

Inductive step: The inductive hypothesis is that Factorial(j)
returns j!, for all j in the range 0 < j<n — 1. It must be shown that
Factorial(n) returns n!. Since n > 0, the test n = 0 fails and the algo-
rithm returns n*Factorialln — 1). By the inductive hypothesis,
Factorialln — 1) returns (n — 1), so Factorial(n) returns
n X (n — 1)\, which equals n'. [ ]

Notice that the proof is only possible because the recursive call is given a
smaller instance than the original, so that the inductive hypothesis may
be applied to it. Also, the theorem says nothing about the behaviour of
Factorial(n) for n < 0, and in fact the algorithm never halts for these n.
The second example is the binary search algorithm. Its goal is to
determine whether a number x is present in the sorted array A[a..b]:

(* Pre: a< b + | and Ala..b] is a sorted array *)
found := BinarySearch(A, a, b, x),
(* Post: found = x € A{a..b] and A is unchanged *)

Binary search first compares x with the middle element of the array,
A[mid]. If x < A{mid], it must lie in the left half of the array if it is present
at all; if x> A[mid], it must lie in the right half. The algorithm is nat-
urally expressed recursively:
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procedure BinarySearch(var 4: 4Type, a, b: integer; x: KevTvpe):
boolean;
var mid: integer,
begin
if a > b then return false;
else
mid ;= (a + b) div 2;
if x = A[mid] then return true:
elsif x < .4[mid] then return BinarySearch (4, a. nud = LX)
else return BinarySearch (4. mid + 1. b. x):
end;
end: _
end BinarySearch:

-4 has been made a var parameter for efficiency’s sake; its value does not
change. The proof of correctness is by induction on the size of the array
Ala..b):

Theorem 1.2: For all n=0, where n=5b—q + | equals the
number of elements in the array A[a..b). BinarySearch(A. a. b. x)
correctly returns the value of the condmon xe Aa..b].

'Proof by induction on »n.

Basis step: n = 0. The array isempty.soa = b + |, the test g > b
succeeds. and the algorithm returns false. This is correct. because v
cannot be present in an emp1y array.

Inductive step: » > 0. The inductive hvpothesis is that. for allj such
thatO = =n — l.wherej = b — a’ + 1. BinarvSearch(4.a’'. b’ . x)
correctly returns the condition x e 4{a’..»’]. From the calculation
mia’ = (a + by div 2 it may be concluded that a=< nud=<b. If
= A[mid]. clearly e 4[a.b] and the algorithm correctly returns
true If x < A[mid). since 4 is sorted it mav be coricluded that
e da.b] if and only if x € Ala.mid — 1]. By the inductive
hypothesis. this second condition is returned by BinarySearch( 1. a.
mid 1. x). The inductive hvpothesis does apply. since 0 = mid—1)
—d = I =n — 1. The case x > A[mid] is similar. and so the
* algorithm works correctly on all instances of size n. n

1.3 Iterative algorithms

In this section the technique used to prove the correctness of an
algorithm containing a while loop is explained. The following algorithm.
which determines the sum of the elements of . 1[a..h). will be used as the
first example:
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(*Pre:asb+ 1%
1:= a. sum := 0,
while /i # b + | do
sum = sum + A[i};
=i+ 1
end:
,"
(* Post: sum = S

/
et
-a

ALY

As usual, the precondition and postcondition are included as comments
at the points where they should be true. Note that, by definition,
A[a..a — 1] denotes an empty array whose sum is 0, and this algorithm
calculates this empty sum correctly.

The key step in the proof of correctness is the invention of a
condition, called the /oop invariant of the algorithm, which is supposed to
be true at the beginning and end of each iteration of the while loop. By the
‘beéginning of an iteration’ is'meant the moment just before the boolean
test at the top of the loop is executed. o

There may be several loop invariants. such as true or (in the example
above) u< b + 1; but to be useful a loop invariant must capture the
relationship among the variables that change in value as the loop pro-
gresses. The loop invariant for the algorithm above is sum = X'} [ j].
which expresses the relationship between the variables sum and i: the
reader may easily verify intuitively that this condition holds at the
beginning and end of each iteration.

For the record. and as a mode! for the more difficult proofs in later
sections of this book. here is a proof that the condition really is a loop
invariant:

Theorem 1.3: (Loop invariant of summing algorithm) At the begin-
ning of the Ath iteration of the summing algorithm above. the
condition sum = X} ! 4[j] holds.

Proef: by induction on k.

Basis step: A = I. At the beginning of the first iteration. the
initialization statements clearly ensure that sum = 0 and [ = qa.
Since 0 = X [ /). the condition holds.

Inductive step:  The inductive hypothesis is that sum = 2| 4{ j] at
the beginning of the Ath iteration. Since it has to be proved that this
condition holds after one more 1teration. it is also assumed that the
“loop 1s not about to terminate. thatis. that i # b + |. Let sum’ and i’
be the values of sum and i at the beginning of the (K ~ 1)st iteration,
We are required to show that sum’ = X' ) 4[j). Since sum'.=
sum ~+ Afi).and 7° =1+ | we have
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sum’ = sum + A[i]

=2 AL+ Ali]

j~a

=2 4L))
= ALjl.

i~a

and so the condition holds at the beginning of the (k + 1)st
iteration. »

_ Establishing the loop invariant is invariably the hard part of the

proof, but there are two easier steps remaining. First of all, the
postcondition must be shown to hold at the end. Consider the last
iteration of the loop in the summing algorithm. At the end of it, the loo;:
invariant holds, as we have shown. Then the test i # b + | is made, fails,
and execution passes to the point after the loop. Clearly, at that moment
the condition

i-1

sum= ) Aljlandi=b+ |

j=a
holds. But

i
sum =Y A{jlandi=b+ |

j=a

= sum = iA[j]

j=a

which is the desired postcondition; so that Post has been shown to hold
when the algorithm terminates. Notice that this conclusion could not
have been reached so simply if i = b + | had been used as the condition
at the top of the loop. In general, just after the completion of the
execution of the loop ‘while B . . .’, with loop invariant /, the condition
] and not B holds, and it is necessary to prove that this implies Post.

The final step is to show that there is no risk of an infinite loop. The
method of proof is to identify some integer quantity that is strictly
increasing (or decreasing) from one iteration to the next, and to show that
when this becomes sufficiently large (or small) the loop must terminate.
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For the summing algorithm, i is strictly increasing, and when it reaches
b + 1 the.loop must terminate. Note that this argument depends on |
being no greater than b + 1 initially; in other words, the condition
a = b + 1 must be true initially in order for termination to be guaranteed.

To summarize, then, the steps required 10 prove that the iterative
algorithm

(* Pre®)
B

end;
(* Post %)

is correct are as follows:

(1) Guess a condition /.
(2) Prove by induction that / is a loop invariant.

(3) Prove that / and met B = Post.
(4) Prove that the loop is guaranteed to terminate.

With practice, a clear intuitive understanding of the correctness of an
algorithm will lead immediately to the loop invariant. Remember that-it
involves all the variables whose values change within the loop, but that it
expresses an unchanging relationship among those variables. It must also
contain complete information about what the algorithm has achieved.

For example, the loop invariant sum = ;2 A[ j] makes good intuit-
ive sense. It simply says that, at the beginning of each iteration, sum con-
tains the sum of all the values examined so far.

Some good guidance on the general form of the loop invariant may
be obtained from Post, since I must satisfy / and net B = Post, where B
and Post are known. Indeed, it is good policy to take Post and generalize it
in some way to obtain /. For example, in the summing algorithm above, /
is just Post with b replaced by i — 1. This simple relationship ensures that
the condition / and net B = Post is readily proven.

At the other extreme, check that the initialization statements
establish /. If they do, and / and net B = Post, it is probably worthwhlle
to proceed with the main part of the induction.

Correctmess of bimary search. This section will be concluded with a
study of the correctness of the following non-recursive binary search
algorithm:
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procedure BmarvSearch(var A: 4Tvpe a. b mteger Xx: KeyTvpe)
" boolean;
Var i, j, mid: integer,
found: boolesn;
begin
(*Preasb+ 1and A[a) S ... < A[b} %)
i:= a,j:= b, found = false;
while (i # j + | and net found do
mid := (i + j)div 2:
if x = A[mid) then found := true;
elsif x < A[mid) then j := mid — 1,
else i:= mid + 1,
end;
end,;
(* Post: found = x € 4[a..b] *)

return found,
end BinarvSearch;

From the discussion of the recursive binary search algotithm in Section
1.2, it is fairly evident that the loop invariant should state that x € A[a..b}
if and only if x € A[i..j]. This takes care of the variables i and j.

The harder question is how to bring found and mid into the loop in-
variant, especially since mid is undefined at the begmmng of the first
iteration. Pérhaps the best way to handle these two i$ to’ imagine another -
version of the algomhm in which the index of xis actually feturned if
found. For this version, found = (a'< mid < b and x = A[mid}) must be
added 1o the posteondition, and this immediately suggests that it be
included m the loop mvanam

"(x € A[a..b] if and only if x € A[i..j])
and (Jound = (a < mid < b and x = A[mid}))

The initialization i :='a; j := b; found := false; clearly establishes this in-
variant. At termination the foop invariant and i = j+ 1 or found both
hold. If found is true. the loop invariant tells us that a < mid< b and
X ='A[mid), so we must have x € A[a..b]; on the other hand. if found is
false, then i = j + 1 and so x ¢ 4[i..j} and therefore x ¢ A[a..h]. Thus
the postcondition holds. The rest of the proof is left as an exercise: it is
quite similar to the -argument used to prove that the recursive binary
search algorithm was correct.
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EXERCISES

1.1 Consider the following recursive algorithm:

procedure g(n: integer): integer;
begin
if n<1 then
return n;
else
return S*g(n — 1) — 6*g(n — 2);
end;
end g;

Prove by induction on n that g(n) returns 3" — 2" for all n = 0.

1.2, Prove that the specification

(*Preasb+ 1%
SelectionSort(A, a, b);
(* Ala] = Ala + 1]=...s4[b*

is satisfied by the procedure

procedure SelectionSort(var A: AType; a, b: integer);
var i: integer;

begin :
ifa=05b+ 1 then
(* do nothing *)
else

i := Minlndex(A, a, b),
if i # a then
Swap(Ali], A[a});
end;
SelectionSort(A, a + 1, b);
end;
end SelectionSort;

You may assume that Minindex(A, i, j) returns the index of a
minimum element of the non-empty array A[i.j], and that
Swap(A[i], A[j]) swaps the two indicated elements.

1.3 The specification given for SelectionSort in the precedmg question
is satisfied by the following procedure:



