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PREFACE

This book contains papers on sparse matrices and their appli-
cations which were presented at a Symposium held at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York on September
9-10, 1971. This is a very active field of research since efficient
techniques for handling sparse matrix calculations are an important
aspect of problem solving., In large scale problems, the feasibility
of the calculation depends critically on the efficiency of the
underlying sparse matrix algorithms.

An important feature of»the conference and its proceedings
is the cross-fertilization achieved among a broad spectrum of
application areas, and among combinatorialists, numerical analysts,
and computer scientists. The mathematical, programming, and data
management features of these techniques provide a unifying theme
which can benefit readers in many filelds.

The introduction summarizes the major ideas in each paper.
These ideas are interspersed with a brief survey of sparse matrix
technology. An extensive unified bibliography is provided for the
reader interested in more systematic information.

The editors wish to thank Robert K. Brayton for his many
helpful suggestions as chairman of the organizing committee and
Redmond O'Brien for his editorial and audio-visual assistance.
We would also like to thank Mrs. Tiyo Asai and Mrs..Joyce Otis
for their help during the conference and on the numerous typing
jobs for the manuscript. A special thanks goes to William J.
Turner for establishing the IBM Research Symposia Series with
Plenum Press.

D. J. Rose
R. A, Willoughby

January 1972
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SYMPOSIUM ON SPARSE MATRICES AND THEIR APPLICATIONS

Donald J. Rose, Department of Mathematics, University
of Denver

Ralph A. Willoughby, Mathematical Sciences Department,
IBM Research

INTRODUCTION

The main body of this Proceedings consists of 15 papers pre-
sented at a Symposium on Sparse Matrices and Their Applications
which was held at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York on September 9-10, 1971. The conference
was sponsored by the National Science Foundation, Office of Naval
Research, IBM World Trade Corporation, and the Mathematical
Sciences Department of IBM Research.

Sparse matrix technology is an important. computational tool
in a broad spectrum of application areas, and a number of these
areas are represented in this Proceedings. Of course, the mathe-
matical and computational techniques, presented in the context
of a given application, impact many other applications. It is
this cross-fertilization that has been a primar¥ motivation for
this and two previous sparse matrix conferences' [Willoughby(1968A);
Reid(1970A)]. Some fields such as Linear Programming, Power Sys-—
tems, and Structural Mechanics were systematically surveyed in the
first two conferences and are not surveyed here. In addition to
the applications themselves, sparse matrix technology involves

Combinatorics, Numerical Analysis, Programming, and Data Manage-
ment.tt

+ . . \ .
Brackets are used in the introduction to cite references in the

unified bibliography at the end of this Proceedings.
++See [Smith (1968A); McKellar and Coffman (1969A); Buchet (1970A);

Denning (1970A); Mattson et al (1970A); Moler (1972A)] for a
discussion of various aspects of memory hierarchies.
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The major ideas in each paper will be summarized in this
introduction. These ideas will be interspersed with a brief
survey of sparse matrix technology. The papers are ordered
alphabetically within groups. The groups are determined partly
by application area and partly by mathematical character. Details
concerning each paper and related sparse matrix techniques will be
given after the listing of the groups of papers in the order in
which they occur.

The first group consists of the papers by Calahan, Erisman,
Gustavson, and Hachtel. These papers concern problem classes in
the field of Computational Circuit Design. Linear Programming
is a second application area which involves sparse matrix tech-

. nology of a very general character.” The papers by’ ' Hellerman-
Rarick and Tomlin comprise the second group.

The sparse matrix technology associated with the field of
Partial Differential Bquations is the subject of the papers by
Evans, George, Guymon-King, and Widlund. Finite element methods
are a very active field of research in this area and the papers by
George and Guymon-King concern the finite element approach.

The papers by Glaser-Saliba and Hoernes form a Special Topics
group. The former paper represents the application of sparse
matrices in the field of Analytical Photogrammetry, which is con-
cerned with the determination of reliable metric information from
photographic images. The second paper concerns Data Base Systems.

The final group of papers are by Cuthill, Rheinboldt-Basili-
Mesztenyi, and Rose~Bunch. These concern the fields of Combina-
torics and Graph Theory.

Computational Circuit Design

In the next few paragraphs some aspects of sparse matrix
technology, which have been motivated by problems from the field
of Computational Circuit Design, will be sketched along with a
discussion of the first group of papers. This field is in some
sense a problem class representative of many applications. Also
it is the most well developed with respect to sophisticated sparse
matrix- techniques. It is for these reasons that this application
area is considered first.

Computational Circuit Design is a very broad and highly de-
veloped area, and it is beyond the scope of this introduction to
systematically sketch all the various problem types in this field.
The interested reader should consult the two special issues of
the IEEE Proceedings [IEEE (1967A), (1972A)] and of the Trans-

actions on Circuit Theory [IEEE (1971A)] for pertinent articles and
extensive bibliography.

In particular, one can have highly irregular sparseness structures
in these first two fields. The matrices are, in general, neither

positive definite symmetric nor diagonally dominant.

++A hyphen is used to connect co-authors.
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The algebraic derivation of the sparse linear systems in
classical Electrical Network Theory can be found in the survev
article [Bryant (1967A)]. A novel tableau approach to this deri-
vation has been motivated by recent advances in sparse matrix
technology [Hachtel, Brayton, and Gustavson (1971A)].

One class of problems in computational design [Hachtel and

Rohrer (1967A)] concerns the numerical integration of the initial
value problem

w = f(t,W,P), ’ (1)

where the vector w(t ) is specified. The vector, p, of design
parameters is to be sSystematically altered so as to find a specific
design vector, Ps which yields "Optimal" time behavior for system
L.

The unavailability, until recently, of efficient integration
techniques for stiff systems of ordinary differential equations
has been a bottleneck in the modeling and computer analysis of
problems in many application areas. This is especially true for
the class of problems described in the previous paragraph. In that
case the efficiency of the integration is a critical factor in the
feasibility of the calculation.

The "stiffness'" in system (1) manifests itself in the abnormal
size (>>1) of the quantity K =, At, where o& is the Lipschitz con-
stant associated with the w-variation of f, and At is the desired
average sampling interval for the output of system (1). Efficiency
is achieved by using an "essentially" unconditionally stable im-
plicit integration formula for (1) of the form

W T ahwm+l =R (2)

where t =t + h and R involves w and w for t<t_ .
mrl - m - m

Svstem (1) is, in general, nonlinear in w, and hence (2) is

nonlinear in Vol For stiff systems, the usual predictor-

corrector methods converge only when h is intolerably small. 1In
this situation, system (2) must be solved by a strongly convergent
technique such as Newton's method. Thus, one solves

)y, LK) (K)
(I -ahJ YAw = R + ahwm+l LAV 3)
for Aw and sets w;$11)= w;i; + Aw, where J = 3f/ow = Jacobian matrix.
. . . o) _ - i -
A simple starting guess in (3) for LA is LATEEL L A final itera

tion vector at t 705m' One can also use an extrapolation procedure
for determining LR

If the Jacobian matrix is full and O(nz) elements depend on

TSee chapter 6 in [Lapidus and Seinfeld (1971A)].
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the current guess for w, then methods like [Broyden (1969A)] are
necessary to insure that the amount of work at each step is of

order n~ rather than n3, where n is the number of components of w.
Fortunately, when n is large in Computational Design problems,
the Jacobian is typically gparse.* The sparseness structure can be
highly irregular, but computational efficienty is achieved, in
spite of thic generality, hy exploiting the fixed sparseness
structure for the Jacobian.
Svstem (3) is of the form

Ax = b (4)

where A = (aij)’ 1<i, j<n. Associated with (4) and a given

Jacobian matrix for system (1) is a set of index pairs
S = {(u,v)lauv = 0}. The set S specifies the sparseness structure

of the matrix A. There are a number of other ways to specify the
sparseness structure for A. For example, one can define for a
given sparse matrix class a Boolean adjacency matrix A_, where
(AS)ij = 1 mean< aij # 0. This representation requireg n2 bits

regardless of the sparsity of A, and also is not necessarily the
most efficient representation from a programming point of view.
Threaded index lists with pointers are an important computational
tool for dealing with sparseness structure [Ogbuobiri (1970B);
Zollenkopf (197CA)]. Gustavson systematically discusses this
latter approach, via examples, in his paper in this Proceedings.

A sparse matrix can also be represented by a graph in various
ways [Harary (19704)]. This topic will be considered in more
detail when the last group of Proceedings papers are being dis-
cussed. :

In a given design calculation associated with the initial
value problem (1), the system (4) is generated and solved a large
number of times. If one fixes, a priori, the order in which the
equations and unknowns are processed in Gaussian elimination or
in triangular factorization, then the entire sequence of machine
operations needed to solve (4) is also determined, a priori,
simply from the sparseness structure of A.

At this point, it is convenient to introduce some standard
notation which is associated with the Crout form of triangular
factorization [Gustavson, Liniger, and Willoughby (1970A)]. Let

A = LU where L = (Rij), Eij = 0 for j>i (lower triangular),
U= (uij), u, = 1, u1.j = 0 for j<i (unit upper triangular). It is

a ) . . ,
also convenient to introduce a composite L\U matrix as C = (c,.)

where c¢,, = &,, for j<i and c,, = u,, for j>i. Each element +J
1] 1] - 13 13

That is, only a few unknowns occur in each equation.
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of C 1is generated by a single formu1a+

-1

cij = (aij - kzl cikckj)d (5)

where m = min(i,j), d = 1 for i>j, and d = cli if i<j. If 3y = 0

and, for l<k<m-1, g 0, then c,. is "logically zero." Other-

k°ky 1j v
wise, a reduced formula defines Clye In this formula only nonzero
numbers occur. : J

In 1966, a highly efficient symbolic factorization program,
GNSO (GeNerate SOlve) was created [Gustavson et al (1970A)]. GNSO
generates a linear (loop-free) code SOLVE, which is specifically
tailored to the zero-nonzero structure of A, The SOLVE program
represents a machine language code for computing the reduced formula

for each Cij # 0. The program SOLVE can be very long and as an

alternative, two programs SFACT and NFACT were created [Chang
(1968A)]. SFACT generates the sparseness structure of C in the
context of Tinney's row Gaussian elimination.Tt The program NFACT
uses the sparseness information for C to enhance the speed of
execution of the numerical elimination.

Gustavson's paper in this Proceedings is a fundamental exposi-
tion of the main programming concepts involved in extensionsTtt to
his own GNSO program, Chang's programs SFACT and NFACT, and those
of Tinney et al. Row Gaussian elimination, with diagonal pivoting
in the natural order, is treated both for the unsymmetric and
symmetric cases. An ordering program OPTORD is also described.

In the design problem associated with system (1) there 1is a
nested set of computation loops. Because of this, the elements aij
of A have a hierarchy of '"variability types" (i.e., = 0; = constant}
or dependent on p, t, or w respectively). The last three variability
types imply increasing frequency of change of the numerical value
of the element a; with that variability type. If the inner loop
calculations are ﬂot memory-limited, then it is desirable to seg-
ment the calculations. This is done in such a way as to avoid
repeated calculation of quantities which are constant within those
inner loops.

+ B

I s, = 0 by definition if B<a.

k=a
+1+Tinney and his colleagues have developed an extensive sparse
matrix technology for problems in the field of Power Generation and
Distribution.[Sato and Tinney(1963A); Tinney and Walker(1967B);
Tinnev(19684); Ogbuobiri, Tinney, and Walker(1970A); Ogbuobiri(1970B)].

+++ FORTRAN subroutines, based on these éoncepts, are in the IBM
program product SL-MATH, which was announced recently by IBM World
Trade Corporation.
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The frequency of change of elements of A can be used in
connection with an ordering algorithm. . These matters are discussed
in [Hachtel, Brayton, and Gustavson (1971A)] and also in the papers
by Gustavson and Hachtel in this Proceedings.

In particular, Huchtel considers the case where the vector b
in system (4 ) is sparse and where only a few components of x are
required as output. The quantities, generated during the Gaussian
elimination proress as well as the forward and backward substitu-
tions, will have an inherited variability type. The forward depen-
dency chain will determine the '"data type" of a quantity (e.g.,

a number may have a t-variable type but a w~data type since this
number is needed to generate a w-variable type quantity in some
subsequent calculation).

The determination of variable type and data type designation
for a quantity is a one-time a priori process which can be exploited
in an extension of the GNSO and SFACT calculations. The cost of
these symbolic preconditioning calculations is amortized over the
number of times system (4) is to be generated and solved for a given
specification of A and of the variability type of each nonzero aij'

In the paper ﬁy Erisman, a sparse matrix program, TRAFFIC,
is described. This program has been designed for a particular
application: frequency domain analysis of linear passive electrical
networks. System (4) is represented in this class of problems as
Y(w)v = ¢, where Y(w) is an n x n complex symmetric admittance
matrix, v 1is the vector of unknown node to datum voltages, c is
the vector of input currents, w 1is the frequency and n is the
number of nodes.

This class of matrices has the additional property that dia-
gonal pivoting in any order is numerically acceptable. Thus, for

any permutation matrix P, M = PY(w)PT has the stable triangular
factorization

M = UTDU , 6)

where U 41s unit upper triangular and D is the (complex) diagonal
matrix of pivots. One also has L = UTD, and this latter equation
is used in a factorization algorithm, which was developed at the
Bonneville Power Laboratory. Programming details for this Bonne-
ville algorithm are described in Gustavson's paper.

Again there is a fixed sparseness structure for M in (6) for
all values of w. The matrix P, which orders the equations in
Y(w)v = ¢, can be determined, a priori, so as to minimize some
complexity criterion [Rose (19714)].

Erisman describes and motivates the techniques built into the
program TRAFFIC, and, at the end, an illustrative example for a
large problem (3300 order with 60,000 nonzero elements) is given.

.1.

Each of the papers in the Procéedings has its own set of notations
and these are, in general, different from the notation here in the
introduction. The superscript T refers to the transpose operation.




