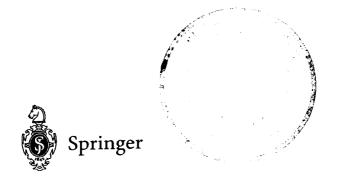
DIGITAL SIGNAL PROCESSING

A. Smirnov


Processing of Multidimensional Signals

Alexandre Smirnov

Processing of Multidimensional Signals

With 119 Figures

Series Editors

Prof. Dr.-Ing. Arild Lacroix Johann-Wolfgang-Goethe-Universität Institut für angewandte Physik Robert-Mayer-Str. 2-4 D-60325 Frankfurt Prof. Dr.-Ing. Anastasios Venetsanopoulos University of Toronto Dept. of Electrical and Computer Engineering 10 King's College Road M5S 3G4 Toronto, Ontario Canada

Author

Professor Alexandre Smirnov Departamento de Fisica Universidade da Beira Interior Covilha 6200 Portugal

Library of Congress Cataloging-in-Publication Data Smirnov, Alexandre, Processing of multidimensional signals / Alexandre Smirnov (Digital signal processing) Includes bibliographical references and index ISBN 3-540-65449-6

1. Image processing - Digitial techniques. 2. Signal processing- Mathematics. 3. Fourier transformations. 4. System analysis. I. Title. II. Series: Digital signal processing (Springer-Verlag) TK 1637.S65 1999 621.36'7--dc21 98-55109

ISBN 3-540-65449-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1999 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready copy from author Cover-Design: de'blik, Berlin SPIN 10693677 62/3020 5 4 3 2 1 0 Printed on acid-free paper Alexandre Smirnov Processing of Multidimensional Signals

Springer

Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Singapore Tokyo

To My Wife and To My Friends in Portugal

PREFACE

The author received his Master Degree (1961) and PhD Degree (1967) in Radio Engineering from the University of Telecommunications, St. Petersburg, Russia.

He was a lecturer of the University and a senior scientist of Vavilov State Institute of Optics, dealing with methods and systems of image processing.

Since 1994 he is a professor of the University of Beira Interior, Covilha, Portugal, his pedagogical and scientific activity being linked with optics and remote sensing.

This book is an attempt to summarize his experience in all these fields.

The author loves Covilha and takes an opportunity of thanking the rectors of the University, Prof. Candido Manuel Passos Morgado and Prof. Manuel José dos Santos Silva.

The author is most grateful to his colleagues, D. Manuela Ferreira, Dr. Afonso Mesquita, Dr. Antonio Matos, Prof. José Vitorio and Prof. Anvar Meirmanov, who helped him when he needed the help, and thanks Prof. Andrew Utkin and Prof. Vadim Yurinsky, who participated in the discussions on the book.

He also thanks the authority of National Foundation for Science and Technology for kind willingness to assist in realization of the research projects in the frameworks of the programs INTERREG and PRAXIS.

Covilha, August 1998

Springer and the environment

At Springer we firmly believe that an international science publisher has a special obligation to the environment, and our corporate policies consistently reflect this conviction.

We also expect our business partners – paper mills, printers, packaging manufacturers, etc. – to commit themselves to using materials and production processes that do not harm the environment. The paper in this book is made from low- or no-chlorine pulp and is acid free, in conformance with international standards for paper permanency.

Printing: Mercedesdruck, Berlin Binding: Buchbinderei Lüderitz & Bauer, Berlin

Table of Contents

In	troduction	1
	I.1 Signals as Physical Objects and Carriers of Information	1
	I.2 Black Box Paradigm	4
	I.3 Multidimensional Signals	6
	I.4 Principal Chapters	7
	1	
1	Analog, Discrete and Digital Signals	13
-	1.1 Primary Analog Signal and Its Harmonic Spectrum	13
	1.1.1 Signal as Physical Object	13
	1.1.2 Properties of Function F(x, y, z,t)	14
	1.1.3 Linear Signal Transformations	19
	1.1.4 Transformations of Signals and Transformations of Functions	20
	1.1.5 Spectrum of Primary Signal	20
	1.1.6 Whittaker-Shannon Theorem	24
	1.1.7 Signal Classification	26
	1.2 Images and Temporal Signals	28
	1.2.1 Adequate Mathematical Models of Signals	28
	1.2.2 Simplification for Mathematical Models	29
	1.2.3 Rotationally Symmetric Images	33
	1.2.4 Differences between Spatial and Temporal Signals	34
	1.3 Discrete and Digital Signals	39
	1.3.1 Discretization	39
	1.3.2 Spectrum of Discrete Signal	43
	1.3.3 Digital Signals	44
	1.3.4 Signal Interpolation and Extrapolation	47
	1.3.5 Additional Remark on Spatial and Temporal Signals	49
	1.4 Digital Signals in Computers	50
	1.4.1 Signals Representation	50
	1.4.2 Programmable Digital Signal Filtration	51
	1.4.3 Digital Images	54
	1.4.3 Digital Images	58
	1.5 Accuracy of Mathematical Models of Signals	50
2	Spatio-Temporal Filtration	63
2	2.1 Deterministic and Stochastic Component of Signal Transformation	63
	2.1.1 Black Box Paradigm	63
	2.1.2 Classification of Operators and Noises of Signal Transformations	65

3

2.1.3 Signal Filtration	6
2.1.4 Experimental Investigation of Filters	6
2.1.5 Development of Mathematical Models of Filtration	7
2.2 Linear Filters	7
2.2.1 Operators of Space and Time Invariant Linear Filtration	7
2.2.2 Difference between Spatial and Temporal Filtration	7
2.2.3 Low-pass, By-pass and High-pass Filters	8
2.2.4 Linear Characteristic Correction	8
2.2.5 Linear Space Variant Filtration	8.
2.3 Non-linear Filters	80
2.3.1 Simplest Space and Time Invariant Non-linear Filtration	8
2.3.2 Correction of Non-linear Characteristics	9
2.3.3 General Non-linear Filtration	9
2.4 Spatio-temporal Noises	9:
2.4.1 Statistical Characteristics of Noise	93
2.4.2 Additive and Multiplicative Noise	9,
2.4.3 Linear and Non-linear Transformations of Additive Noise	96
2.5 Digital Filtration	98
2.5.1 Temporal Non-Recursive and Recursive Digital Filters	98
2.5.2 Spatial Digital Filters	102
2.5.3 Program Realization of Digital Filtration	105
2.5.4 Correction of Characteristics of Linear Digital Filters	108
2.5.5 Non-linear Digital Filtration	115
2.6 Signal Restoration	116
2.6.1 Formulation of Problems	116
2.6.2 Restoration without Noise	116
2.6.3 Restoration by Regularized Pseudo-inverse Filters	117
2.6.4 Noise in Signal Restoration Tasks	121
2.7 Accuracy of Mathematical Models of Signal Transformations	122
2.7.1 Transformations of Errors	122
2.7.2 Statistical Modeling and Estimation of Transformed Errors	123
Discretization and Scanning	125
3.1 Signal Transmission and Signal Storage	
3.1.1 Communication Channels and Multichannel Lines	125
3.1.2 Storage Media and Memories	127
3.1.3 System of Image Transmission	129
3.1.4 Methods of Signal Writing and Reading	130
3.2 Discretization and Distortions of Discrete Signals	134
3.2.1 Mathematical and Physical Discretization	134
3.2.2 Filtration in Process of Signal Discretization	135
3.2.3 Signal Distortions Caused by Discretization and Interpolation	138
3.3 Scanning for Reading and Writing	141
3.3.1 Types of Scanning	141

	3.3.2 Ideal Scanning Elements	143
	3.3.3 Filtration in Scanning Processes	
	3.3.4 Scanning Systems	
	3.4 Trajectories of Two-Dimensional Scanning	153
	3.4.1 Limitations on Trajectories of Scanning	153
	3.4.2 Spiral Raster	
	3.4.3 Radial Raster	157
	3.4.4 Line Raster and Its Modifications	159
	3.4.5 Point Raster	161
	3.5 System of Alive Image Transmission	163
	3.5.1 Temporal and Spatial Distortions of Transmitted Images	163
	3.5.2 System with Ideal and Non-ideal Videochannel	165
	3.5.3 Usage of Comb Filters in Videochannel	167
	3.5.4 Parallel Processing of Temporal Signals	
	• •	
4	Imaging System Quality Assessment	171
	4.1 Philosophy of Quality Assessment	171
	4.1.1 Imaging Systems	171
	4.1.2 Criteria of Quality (Figures-of-Merit)	173
	4.1.3 Quality of Imaging System as Opinion of Its Users	174
	4.1.4 Aim of Imaging	175
	4.1.5 Standards of Quality	177
	4.1.6 Environment of Problem of Quality Assessment	178
	4.2 Measures of Quality	
	4.2.1 Measures of Quality for Specialized Systems	
	4.2.2 Measures of Quality Based on Paradigm of Ideal Imaging	
	4.2.3 Universal Measures of Quality	
	4.2.4 Comparison of Measures of Quality	
	4.3 Criteria of Quality	
	4.3.1 Qualimetric Experiment	
	4.3.2 Averaging, Typization and Standardization	
	4.3.3 Choice of Representative Group of Users	188
	4.3.4 Description of System Properties	189
	4.3.5 Secondary Parameters	192
	4.4 Optical Imaging System Optimization	192
	4.4.1 Mathematical Models of Optical Imaging Systems	
	4.4.2 Wave and Geometrical Aberrations	
	4.4.3 Criteria of Quality as Functions of Geometrical Aberrations	197
	4.5 Spatial Resolution and Resolving Power	199
	4.5.1 Spatial, Temporal and Spectral Resolution	199
	4.5.2 Dual Measures of Spatial Resolution	200
	4.5.3 Resolution of Imaging System with Noise	203
	4.5.4 Rayleigh Criterion	205
	4.5.5 Development of Spatial Resolution Criteria	207

	4.6 Accuracy of System Optimization	210
	, , 1	
5	Modulated Signals	213
	5.1 Modulation and Demodulation of Signals	213
	5.1.1 Modulating Signals, Carriers and Modulated Signals	213
	5.1.2 Distortions of Modulated Signals	216
	5.1.3 Modulated Signal Classification	218
	5.2 Polychromatic Modulated Signals	221
	5.2.1 Light Generators and Light Receptors	221
	5.2.2 Polychromatic Imaging Systems	224
	5.2.3 Correction of Spectral Characteristics	227
	5.2.4 Chromatic Distortions	228
	5.3 Amplitude, Frequency, Phase and Polarization Modulation	229
	5.3.1 Modulated Temporal Signals	229
	5.3.2 Radio Communication	233
	5.3.3 Doppler Effect	235
	5.3.4 Polarization Modulation	
	5.4 Pulse Modulation	237
	5.4.1 Discretization as Amplitude Pulse Modulation	237
	5.4.2 Duration and Delay Modulation of Temporal Signals	
	5.4.3 Pulse Modulation of Spatial Signals	241
	5.4.4 Pulse Modulation in Neural Networks	243
	5.5 Concluding Remarks	243
Appendix A: On Fundamental Notions of Probability Theory		
Аp	ppendix B: On Applications of computers in Visual Art	257
Re	ferences	267
Y	1	260

INTRODUCTION

I.1 Signals as Physical Objects and Carriers of Information

Our interaction with our natural and artificial environment is based on perception, transmission, storage and processing of *signals* of different kind. Through the eyes and ears we percieve optical (visual) and acoustical (audible) signals which are transformed into nerve signals to be transmitted, stored and processed in our neural network and brain. In reply, the brain generates other nerve signals which pass through the neural network and put our muscles into operation. In such a way we adapt ourselves to the environment or/and change (control) the environment. In technical information systems (which help us to solve the same tasks of adaptation to or transformation of the environment) we encounter electrical and radio-signals, optical and acoustical signals (including signals outside the boundaries of our perception), mechanical, pneumatic, hydraulic and many other signals.

In spite of differences between all those signals we can define, at least, their two common properties:

- All signals are physical objects existing in three-dimensional space and in the time:
- All signals are carriers of information.

As physical objects signals have some physical properties, including a specific type of *energy* and space-time *structure*. As carriers of information signals have some *semantic properties*. In information systems signals are undergone to energetic, structural (spatio-temporal) and semantic *transformations* resulting in alteration of their properties, and we can imagine a general multilevel hierarchical system of signal processing and control (Fig. I.1).

According to Fig. I.1, primary signals containing some information about real objects, scenes and situations are preliminary processed (pre-processed) at lower levels of the system. Algorithms of signal processing on higher levels, possibly, include detection and classification of the objects as sources of signals, analysis of scenes composed by interconnected objects, analysis of properties of the objects and analysis of processes and situations in the scenes.

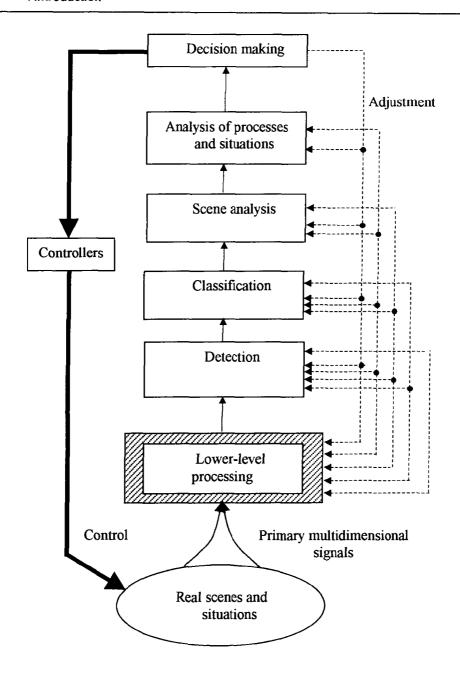


Fig. I.1. One among possible interpretations of the process of our interaction with the environment, including signal acquisition, signal processing and control of the sources of signals

Possibly, some *knowledge (model of the world)* is used at the higher levels and, possibly, the hierarchical organization is supplemented by parallel processing in several signal pathways.

After making decisions on objects, scenes and situations a process of their control is realized with the help of some controllers in a feedback control loop.

Local feedback loops (dotted lines in Fig. I.1) can be used to adjust lower levels by higher levels providing the best (in a sense) signal processing and, eventually, the best (in a sense) control of the environment.

This hierarchical system can be:

- a human realizing signal acquisition, all levels of signal processing, and control;
- a technical automatic system which performs the same task instead of the human;
- a semi-automatic system composed by a human and a technical subsystem operating in so called interactive mode.

In the latter case the most widely used interaction scheme is the following: the technical system pre-processes primary signals, while the human (system user) uses the output signals of the system to provide higher-level processing and control.

It is this case we consider in the book. We deal with the technical systems of pre-processing of multidimensional signals, supposing that the system user (observer of output images or/and the listener of output sound signals of the system) uses the signals for this or that higher-level processing, for making decisions and for control (Fig. I.2).

The set of signals to be considered includes temporal electrical and radiosignals with different types of modulation, acoustical signals, and optical, electrooptical, photographic, television, radiolocation and other images. Transformations to be considered mostly cover the processes of *signal* transmission and signal storage in pre-processing systems and their subsystems.

In the frameworks of this paradigm we have a chance to consider a great set of practical information systems and to investigate diverse multidimensional signal transformations at the physical and structural level. Its disadvantage reveales in the tasks of system optimization. If we try to create not just a system, but the best (optimum) system we should understand how the pre-processed signals are transformed at the higher levels and what control process is eventually realized according to Fig. I.1. Thus investigations of pre-processing technique as such appear to be incompleted, and the omitted higher-level signal processing in such or other form penetrate into the problem of substantiation of *criteria of system optimality*. We are going to discuss this problem in Chapter 4.

It should be mentioned that the same problems are being considered by several specialized sciences, including theory of electrical circuits, information theory, physical and technical acoustics, physical and applied optics, theory of photographic process, theory of radiolocation, etc., and each of them investigates some specific signals and specific signal transformations.

Two opposite tendencies can be traced in development of these sciences: further specialization and generalization.

This tutorial text is a step in the direction of *generalization*. In spite of different physical properties of signals as physical objects we emphasize their common features as *signals* and emphasize common features of their physical transformations as *transformations of signals*. We try to put in order the experience accumulated in this field and to supplement it with physical and mathematical reasoning.

Fig. 1.2. Basic conception of this book: supposedly, primary multidimensional signals are percepted and pre-processed by a technical information system; output signals of the system are perceived, processed at higher levels and practically used by the human (system user)

1.2 Black Box Paradigm

Our investigation of physical signal transformations is based on fundamental *black* box paradigm. Any signal pre-processing system, or a subsystem of more complicated system, or a smaller part of the subsystem can be represented as a