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EDITORIAL

The scope and purpose of analytical atomic spectroscopy is growing so fast that even the
dedicated scientist cannot follow significant developments which appear in a large number of
journals covering many subdisciplines, disciplines, inter-disciplinary and multi-disciplinary
areas. This analytical breadth becomes evident when one considers that in addition to many
journals of spectroscopy and analytical chemistry where papers in analytical atomic spectro-
scopy are regularly published, an increasing number of such papers are also published in
journals of clinical chemistry, biology, environmental science and technology, marine sciences,
forensic science, materials science, mining, geology, metallurgy, fuel science, glass and
ceramics, instrumentation, food and drugs, agricultural sciences, biochemistry, geochemistry,
biogeochemistry, etc. Analytcal atomic spectroscopy has recently experienced an extremely
rapid growth in electrothermal atomization in atomic absorption spectroscopy, and in in-
ductively-coupled plasma-optical emission spectroscopy — growth in the latter continues
unabated. At present a serious time lag exists between evolution and practice and between
the establishment of a technique and the appearance of suitable monographs. This journal
aims to bridge this gap by presenting a continuing series of volumes containing contributions
from outstanding authorities having intimate knowledge of and experience with their subject.
These contributions will be critical reviews embodying comprehensive assessments of analyt-
cal techniques and their applications.

The literature of analytical atomic spectroscopy is growing so quickly that it is becoming
increasingly difficult for the new research worker to know where to start reading. My personal
interest in this journal has stemmed from realization that efficiency of literature-searching by
graduate students can be increased significantly by having access to current, comprehensive
reviews. The original idea was to publish Comgrebensive Analytical Atomic Spectroscopy but
later it was decided instead to publish a review journal because the latter endeavour would
serve our purpose better. 1 was commissioned to discuss these ideas with international
authorities and, if interest seemed promising, to solicit some contributions. Most scientists
responded enthusiastically that a review journal was a better idea and that it would fill a real
gap and need. Already we have some forty promised reviews. Quick publication by camera-
ready copy will enable us to bring review articles in rapidly evolving subject areas. A good
review will serve two kinds of readers — the newcomer who wishes to know the salient
features and the expert who wishes to hear the latest news. We hope to publish critical com-
prehensive reviews surveying various toplcs on a scholarly level sausfymg the specialist and
nonspecialist alike.

Some of the existing journals occasionally publish cm:lcal reviews but such reviews are
neither periodic nor can they be comprehensive because of the constraints imposed by limited
space and scope. Annual Reports on Amalytical Atomic Spectroscopy, published by The
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Chemical Society, UK, fulfils the need of a synoptic, critical survey of -icveiopments in
various fields during the past year. Our journal will fill the existing gap and need for a ceview
journal.

Comprehensive reviews occupy a special place in scientific literature — intermediate be-
tween the concise original papers of scientific journals and the exhaustive treatment allowed
by books. Such reviews will give the author space and opportunity to expound ideas, and to
give his personal evaluation after he has “‘weighed”, “digested” and “balanced” the available
evidence, some of which may be conflicting. ‘

The scope of this journal includes atomic absorption spectroscopy, optical emission
spectroscopy with excitation by arc, spark and other sources especially by high-temperature
plasmas, atomic fluorescence spectroscopy, X-ray and electron beam techniques. The scope
will be flexible and broad. The journal will serve the modern analytical scientists whose
profession each day demands broader pcrspective and solution of problems with increased
complexity. In solving problems posed by new materials and new technology, the analytical
chemist (whose responsibilities include both characterization and quantification), is increas-
ingly required to be fully conversant with a wide variety of techniques that are available so
that he can use the most appropriate technique or techniques to solve a particular problem.

Our reviews will be solicited and contributed. Authors are encouraged to submit draft
manuscripts to the Editor-in-Chief or any member of the Board of Advisory Editors for con-
sideration. All contributions will be refereed by experts in the field who will be asked to
comment on any errors or omissions. We seek critical and authoritative contributions from all
sources but must insist on the English language.

From time to time an entire volume (such as this volume) will be devoted to a single
topic and will embody recent developments made in the author's laboratories. Such contribu-
tions may not be critical reviews but have the merit of presenting significant developments
in a critical, comprehensive manner. Furthermore, it is our intention at a later date to produce
a major work ‘Comprehensive Analytical Atomic Spectroscopy’ using up-dates of selected
articles from this journal supplemented with others that will be specially commissioned.

Book reviews will be included from time to time and any books for review should be sent
to the Editor-in-Chief.

“Forthcoming Events” will be a regular feature. This will enable readers to know well in
advance the dates of relevant meetings. Conference organizers are asked to note this facility
which is offered to them free of charge. Brief details of planned meetings should be sent to
the Editor-in-Chief as early as possible.

Comments and suggestions from readers are welcome and maybe sent to any of the
members of the Board of Advisory Editors or to the Editor-in-Chief.

C.L. Chakrabarti,

Editor-in-Ciief,

Progress in Analytical Atomic Spectroscopy,
Professor of Chemistry,

Department of Chemistry,

Carleton University,

Ottawa, Ontario, Canada,

K1S 5B6.
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INTRODUCTION

A flame is the most widely used medium for atomizing samples in atomic absorption spectro-
metry (AAS). However, the demand for better sensitivity and detection limits, the necessity
for more economical use of samples and the fundamental limitations of flame technigues
have led to the development of a variety of electrothermal atomizers as alternatives to flames.
These electrothermal atomizers have utilized heated graphite tubes, carbon rods and filaments,
sampling boats and cups, loops, and metal filaments. Comprehensive reviews of these atom-
izers have been published by Kirkbright [1], Syty [2] and Woodriff {3], and recent develop-
ments have been reviewed by Hieftje et al. {4].

Electrothermal atomizers are more difficult to build, cost more to purchase and are
physically more bulky than a typical nebulizer-burner (flame), as they require a large and
elaborate power supply and fairly sophisticated equipment to record the analytcal signals.
The most commonly used electrothermal atomizers (graphite tubes and rods) offer tremend-
ous analytical advantages and further potential for development over atomization by the
flame technique, as shown below.

(1) Electrothermal atomizers require only a few microlitres of sample per injection.

(2) Viscous liquids that are difficult to nebulize in the flame can be conveniently handled
with electrothermal atomizers.

(3) Analysis of samples in the vacuum ultraviolet is possible with electrothermal atomiz-
ation (using a system purged free of air), whereas such a measurement with a flame is pre-
vented by the intense absorption by oxygen.

(4) Electrothermal atomizers produce a low background signal, resulting in superior
signal-to-noise ratios (i.e. better detection limits) to those given by the flame technique.

(5) The chemical and thermal environment of the atomic vapour can be much better
controlled when electrothermal atomizers are employed.

(6) The efficiencies of vaporization and atomization in electrothermal atomizers are
usually superior to those in the flame, especially in the cases of elements which tend to form
thermally stable oxides. This is a consequence of the smaller volume of the electrothermal
atomizer, the absence of dilution of the analyte by expanding flame gases, the highly reduc-
ing environment inside an incandescent graphite tube and the more complete vaporization
and dissociation. \

(7) Enhancements in sensitivity of the order of 10°—10° over the flame technique are
attainable with electrothermal atomizers as a result of the above characteristics and the in-
creased lifetime of the atomic vapour within the analytical volume.

(8) The capability of direct solid sampling exists when electrothermal atomizers are used.

(9) The speed of analysis by flame and clectrothermal techniques is similar.

The possibility of determining a large number of elements (~ 70) with high sensitivity,
selectivity, accuracy and speed, coupled with the simplicity, relatively low cost of apparatus

9
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Introduction

and low cost of analysis (per element), makes AAS with electrothermal atomization potenti-
ally ideal for trace and ultratrace analysis. It is therefore not suprising that the technique has
been shown to be of considerable value for the detection and quantitative determination of
trace amounts of metals in a variety of matrices [2—4].

In most cases, emphasis in research concerning atomic absorption spectrometry with
electrothermal atomizers has been placed on the construction of electrothermal atomizers
and their application to practical analytical problems; thus, there is a body of largely empirical
studies without an adequate background framework of theory. Only a relatively few authors
have done a systematic study of the fundamental aspects of electrothermal atomization. This
is in striking contrast to the large amount of theoretical material which has been published on
the flame technique. The primary reason for the difficulty in explaining the behaviour of
atomic populations produced by electrothermal atomizers lies in the transient nature of the
atomic vapour. The distribution of free, gascous atoms and their lifetime depend not on the
equilibrium temperature of the atomizer but on the rate of atomization of analyte com-
pounds or their decomposition products from the graphite surface. An understanding of the
processes of vaporizaton and atomization is important since it will ultimately enable pre-
diction of ‘optimum conditions for analysis based on theoretical principles (as opposed to
empirical studies), and provide information about the mechanism of interference from con-
comitants in the analyte matrix. The nature of the signal profile is also important because
proper recording of the atomic absorption signal (which depends on the correct design of
equipment) is a prerequisite to obtaining accurate and precise analytical data. In order to
understand the processes occurring in electrothermal atomizers, a fundamental study of the
time-dependent processes which occur during the atomization of an analyte in graphite
(tube-type) ¢lectrothermal atomizers was undertaken. During the time this research was in
progress, the following topics were reported in the literature: characterization of atomic
absorption signals and various methods of their measurement (5], the influence of the re-
sponse time of the amplifier-recorder system on the signals [5—8], the influence of the rate
of heating of the atomizer on the analytical sensitivity [8—10], the effects of atomizer geo-
metry and construction material on the signals [11—14], the mechanism of atom formation
[10, 12, 15—17), the temperature of the atomic vapour within the atomizer [18], and the
interferences due to compound formation and the composition of the matrix [19—24]. By
far the most important work to date is that by L'vov [11], who has explained the pheno-
menon of production of atomic vapour and the concept of the temporal signal profile.



CHAPTER 1

CHARACTERIZATION OF TRANSIENT SIGNALS AND
THEIR MEASUREMENT

Analytical signals obtained with electrothermal atomizers are, in general, curves having peaks
[2], their exact shape for a given clement being determined by the physical and chemical
properties of the matrix, by the propertes of the sample cell (geometry, construction
material), by the heating rate of the atomizer and by the distortion of the signal caused by
the finite response time of the amplifier-recorder system used. The selection of an optimum
method of atomization in atomic absorption spectrometry is therefore a complicated problem
which still remains largely unresolved, the main reason for this being the purely empirical
approach to its solution taken by the majority of the investigators in this field.

‘The most widely used method of measuring signals given by electrothermal atomizers
is the measurement of the maximum or peak absorbance attained {11}. An alternative
method is to measure the integrated absorbance, obtained by summing the absorbance values
over the time period during which free atoms reside within the analytical volume (defined by
the beam of radiation from the emission source).

- Theory of Signal Shape

To assess the relative merits of the peak and integration methods of measurement of
signals from a theoretical viewpoint and to consider the influence of various physicochemicai
factors on the analytical characteristics of the signals, L'vov [5, 25] and L'vov et al. (26, 27]
devised a mathematical model to describe the time-dependent characteristics of the atom
population within an isothermal cuvette. For the sake of simplicity, only the processes of the
transfer of sample vapour through the analytical volume were considered; all intermediate
stages in the transformation of the sample before it entered the analytical volume (i.e. the
mechanism of atom formation) were not taken into account. The following assumptions were
made in constructing the mathematical model: the element to be determined is completely
atomized; all of the atoms of the element enter the analytical volume; the removal of atomic
vapour from the analytical volume is determined solely by diffusion under a concentration
gradient. The following variables are introduced: Ny is the number of atoms of the element
to be determined in the sample; N is the total number of atoms of the element within the
analytical volume at the moment of time ¢; 7', is the atomization time — the time duration
of transfer of atoms into the analytical volume; 7' is the residence time of atoms within the
cuvette — the mean length of time spent by an atom within the analytical volume, and 73 is
the length of time during which the signal is recorded (73 = 'y +575).

11



12 R.E. Sturgeon and C.L. Chakrabarti

The change in the number of atoms within the analytical volume at any instant of time ¢
is determined by the difference between the number of atoms entering the analytical volume,
ny(t), and the number of atoms escaping from it #,(¢), in unit time:

AN/dt = ny(2) — ny(2). (1.1)

With a diffusional mechanism of vapour loss, the function »,(t) may be approximated by:
ny(t) = N/T 5. (1.2)

Introduction of sample into the analytical volume takes place via a process of accelerated
vaporization of the sample due to the continuously rising temperature of the evaporation sur-
face. Hence, n; () may be approximated by:

ny(t) = At. (1.3)
From the condition of normalization, A may be determined:
T’l
ny (t)dt = Ny . (1.4)
0
Hence
ny(t) = 2No/1' 1 2t (1.5)
and equation (1.1) becomes:
dAN/dt = (2No/T' 1 2)t — N/T'5. (1.6)

This is a general linear first-order differential equation which may be solved with the aid of
an integration factor [exp(z/7'3)] to yield the following integral:

! ]
Ne<r', e’T2 = (2No/7'12) | te¥T 242 + C.

(1.7)
Integrating, and evaluating C from the boundary condition N = 0 at ¢ = 0 yields:
7'22 1 '
= — — /T
N, =2No 1+¢ T2 (1.8)
72 |7,
3
When the sample has been completely atomized (1 = 7';), N , ATI2iNs 4 maximum:
7'2 2 -7’1 , ,
Ner!y =2No =~ == =147 T1/T2 (1.9)
™ 17
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At t 2 7'y, equation (1.1) must be modified to account for the fact that the sample
introduction step has been completed and only diffusional loss follows, i.e.

dN/dt = — N/T's, (1.10)

f t aN / (1.11)
1.'\11.'1

Nzt =Ny e DI, (1.12)

.

Substitution of the value of N,rrl given by equation (1.9) results in equation (1.13).

PR

=2Ng - — —1+¢
Ta T2

! 7
=T 11T 2

’ r
N L7102 (1.13)

¥
-t>—41

Equations {(1.8) and (1.13) describe the kinetics of change in the number of atoms
in the analytical volume as a function of time. A graphical representation of this is shown

TIME Gn T, units)

Fig. 1. Variation in the number of atoms in an analytical volume for different T'1/T'2 ratios.
=T /My =022—71/7=10;3-71/T3=50.

‘in Fig. 1 where the pulse shapes for various 7'1/7', ratios have been plotted according to

equations (1.8) and (1.13).
Methods of Recording Atomic Absorption

The pulses shown in Fig. 1 may be conveniently characterized by two quantities; the
peak value, N_, corresponding to the peak of the pulse, and the area under the pulse, Q.



