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FOI'EWORD

The Boundary Integral Equation (BIE) or the Boundary Element Method
is now well established as an efficient and accurate numerical technique
for engineering problems. This book presents the application of this
technique to axisymmetric engineering problems, where the géometry and
applied loads are symmetrical about an axis of rotation. Emphasis is
placed on using isoparametric quadratic elements which exhibit excellent
modelling capabilities. Efficient numerical integration schemes are
also presented in detail.

Unlike the Finite Element Method (FEM), the BIE adaptation to
axisymmetric problems is not a ‘straightforward modification of the two-
or three-dimensional formulations. Two approaches can be used; either
a purely axisymmetric'approach based on assuming a ring of load, or,
alternatively, integrating the three-dimensional fundamental solution
of a point load around the axis of}rotational symmetry. Throughout
this book, both approaches are used and are shown to arrive at identi-
cal solutions. .

The book starts with axisymmetric potential problems and extends
‘the formulation to elasticity, thermoelasticity, éentrifugal and fracture
mechanics problems. The accuracy of the formulation is demonstrated
by solving several practical engineering problems and comparing the BIE
solution to analytical or other numerical methods such as the FEM. This
book provides a foundation for further research into axisymmetric prob-
lems, such as elastoplasticity, contact, time-dependent and creep prob-
lems.

I wish to express my sincere gratitude to Dr R.T. Fenner for his
constant guidance, encouragement and excellent advice throughout the
course of this work. I would also like to thank my colleagues; Drs
K.H. Lee and E.M. Remzi fo} their valuable discussions on the BIE method,
and Dr M.J. Abdul-Mihsein for his collaboration on Chapters 5 and 6.
Thanks are also due to Mrs E.A. Hall fcr her skilful and accurate typing
of this manuscript. Finally, I am indebted to my wife, Jane, for her

patience and understanding throughout this work.

Stafford, England, December 1985 A.A. Bakr
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‘grals, { = 1,5

area in a radial plane through the axis of rota-
tional symmetry

surface area of a crack

matrix containing the integrals of the tractlon
kernels

coefficients of the sub-matrices of the matrix [A]

coefficients used to determine the elliptic inte-
grals, £ = 1,5

matrix containing the integrals of the displace-
ment kernels

coefficients of the sub-matrices of the matrix [B]

.coefficients used to determine the elliptic inte-

grals, i = 1,5 -

paraméter contributing to the leading diagonal
terms of the matrix {A] in.the potential problem

solution matrix multiplying the unknown variables

coefficients used to determine the elliptic inte-
grals, { = 1,5

parameter contributing to the leading diagonal
terms of the matrix {A] in the elasticity problem

matrix multiplying the known. variables

number assigned to ‘the cth node of the mth ele-
ment

coefficients used to determine the elliptic inte-

Young's modulus - -

matrix containing the known coefficients to be
solved in the potential and elasticity problems

matrix containing the known coefficients to be

-solved im the thermoelasticity problem.

complete elliptic integral of the second kind of
modulus m

percentage compression of a rubber block

unit vectors in the radial and axial directions
strains in the radial, axial and hoop directions
shear strain

body force vector’

matrix containing the integrals of the thermo-
elastic kernels multiplying the temperatures

components of the body force vector in the radial
and axial directions

funttion to be 1ntegrated using the ordinary
Gaussian quadrature technique

modified function to be integrated using the
1ogarithmip Gaussian quadrature technique
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total number of Gaussian quadrature points
Galerkin vector

matrix containing the 1nfegrals of the thermo-

elastic kernels multlplylng the temperature grad-
ients .

matrix containing the known coefficients to be
solved in the centrifugal problem

components ‘0f the Galerkin vector in the radial
and axial directions

strain energy release rate for fracture modes I,
I1 and III

height of a cylinder

functions remaining non-zero over the rarige of
integration

Hankel transform of order n

ratio between the heat transfer coefficient to
the thermal -conductivity

integrals; of the thermoelastic kernels-in the

"rad1a1 and axial directlons
'Jacoblan of transformation
:-.J-gontour integral

Bessel function of order n

" components of the Jacobiah of transformatlon in

the radial and axial directions
complete elliptic 1ntegra1 of the first kind of

;modulus m
"' first potent1a1 kernel multlplylng the potent1a1

gradient

second potential kernel mnltlplylng the potential
gradient. .

. normalised. stress intens1ty factor

stress iftensity factors for. fracture modes I,
II and III

axisymmetric centrifugal kernels

axisymmetric thermoelastic kernels in the radial
direction

'axisymmetric thermoelastic kernels in the axial

direction

‘thermal conductivity

total number of nodes
modulus of ‘the elliptlc 1ntegra1s

components,af the unit tangential vector in the
radial and,axial directions

shape function associated with a nodal point ¢
unit outward normal to the surface S
components of the unit outward normal in the

‘radial and axial directions

I
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arbitrary boundary point
load point inside the solution domain

components of the ring load vector at p in the
radial and axial directions

field boundary point

: _ Legendre function of the second kind of order

zero and degree n-}
interior point in the volume V

radial distance measured from the centre of a
sphere

inner radius of a cylinder or sphere

outer radius of a cylinder or sphere

radius of a round bar or solid cylinder

fixed radial coordinite of the load point p
physicél distance between points p and Q
variable.radial coordinate of the boundary point

" variable radisl coofdinate of the interior point

surface of the volnﬁebv:q
distance on the path T'.

surface, of the sphere of radius e

arbitrary scalar quantity

temperatures at the internal and external surfaces
of a cylinder or sphere

traction kernel functions in Cartesian coordinates,
4 =1,3, j = 1,3

axisymmetric traction kernel functions

tractions in the directions tangential and normal
to the surface

compbhenté of the traction vector in the radial
and axial directions

strain- energy of the body

displacément kernél functions in Cartesian co-
ordinates, { = 1,3, §'= 1,3

axisymmetric displacement kernel functions
displacement vector

displacement in the radial direction from the
centre of a sphere

components of the displacement vector in the
radial and axial directions

volume of the solution ‘domain
volume of the sphere of radius ¢
arbitrary vector quantity

components of an arbitrary vector in the radial
and axial directioms
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strain energy density of thé& body

weighting functions associated with ordinary
Gaussian quadrature points

weighting functions associated with logarlthmlc
Gaussian quadrature points

fixed x-coordinate of the load point p

vector of unknown gquantities

variable x-coordinate of the boundary point Q
fixed y-coordinate of the load point p

vector of unknown quantitiés t

variable y-coordinate of the béundary point Q
fixed axial coordinate of the load point p
variable axial coordinaie of the field point Q

variabié axial coordinaté of the interior point
q E . B

coefficient of thermal expansion

surface path in any radial plane through the. axis
of rotational symmetry-:

path from one surface of the crack to the other
inside theé solution domain

common interfacé betwéeh two subdomains

: parameter o? Legenure tunctions of the second

kind

specific surface energy of the body
Dirac delta function

Kronecker délta

radius of small sphere centred at the load point
P

angular coordinate of the load point p

angular coord;nate of the boundary point q
shear modulus

Poisson's ratio

local or intrinsic coordinate

density of the material

distance from crack tip

principal stresses

direct stresses in local directions 1, 2 and 3
shear stpeéseé in the local directibns 1 and 2
critical stress required for crack growth

von Mises equivalent stress 

nett stress acting on the cross-section.at the
crack plane

direct stress in the radial direction from the
centre of a sphere
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direct stresses in the radial, axial and hoop
directions .

shear stress

direct stress in the tangential direction to the
surfaces of a sphere

unknown harmonic function satistying Laplace'l
equation

potentials at the inner and outer surtaces of a
cylinder or sphere

potential function

fundamental solution for Laplace's’ équation in
three-dimensional Cartesian coordinates

angular velocity
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CHAPTER 1
INTRODUCTION AND AIMS

1.1 INTRODUCTION'

In many engineering problems, both the geometry and the applied
boundary conditions are- symmetrical about some axis. Axisymmetric’
geometries, or bodies 6f revolution; are férmed’ by rotating a two-

dimensional plane through 360° about an axis. ' Therefore, such bodies
" can be represented by a typical radial plame passing- through the axis
of rotational symmetry, subsequently reducing the analysis from three
dimensions to two dimensiong; the radial and axial directions. Axi-
symmetric engineering problems arise, for,exnmﬁle, in pressure vessels,
nuclear_renctors, pipes, mechanical seals and shafts. -

Analytical solutions in engineering are often limited to simple
geometries and loading. In complex pragtiénl engineering problems,
they rarely yield acceptable results for desigm purposes, ahd at best -
produce results which are unreasonably approximated, resulting in the
use of rather large factors of safety. Experimental techniques,’on
the other hand,'can produce accurate results but tend to be very expen-
sive and time-consuming. The advent of high speed digital computers
made it often more aecurate and economical to use numerical méthods in
engineering. Indeed, computational methods are now an 1nsepnrab1e’
part of engineering design, manufacturs, research and development.

The Finite Element Method (FEM) is perhaps the most widely used
numerical technique in engineering.  This méthod, bssed on dividing
the solution domain intd small segments or elements, has proved very

"versatile, and is constantly being developed and improved. However,
there are some drawbacks in using the FEM. - One of the drawbacks is

the need to use a large amount of small elements in regions of high
stress concentration, and the computing cost aesociated with solving a
large set of simultaneous equations is ofteh very high although the
coefficient matrix is symmetric and of bnnded form. = Also, most finite
element analyses give less accurate results for streéses ‘than for dis- -
placements; the former being of more practical use to encineers. Per-
haps the most ‘serious ﬁrawback i using the FEM to solve complex engin-
eering problems is that the data input for mesh geometry and loading
conditions can be a very tiresome time-consuming and error-prone pro-
cess, even when using sophisticated mesh generation programs. Further-
more, the FEM programs &iéld a large tmount of output data, most of
which remain unused, particularly at internal points.



Recently, a new numerical technique called the Boundary Integral
Equation (BIE) method, or the Boundary Element Method (BEM), was init-
ially developed for potential problems and later extended to elasticity
problems due to the analogy between potential theory and classical elasti-
cityAtheory. This method discretises only the boundary of the problem
and not the whole solution domain, resulting in the reduction of dimen-

sionality by one. Thus, three-dimensional geometries are modelled.by
two-dimensional elements, while axisymmetric and two-dimensional geo-
metries are modelled by one-dimensional line elements. This is the

main advantage of the BIE method over the FEM since the time taken to
input and interpret the data for a particular problem is substantially
reduced. This.advantage'is particularly imporfant in modern day ana-
lysis of engineering problems, becayse computers are becoming so effi-
cient and commercially inexpensive that the cost of the‘engineer's or
analyst's time spent on the &atg input is more significant than the cost
of the computer time used in performing the analyéis. Also, in practi-
cal applications, the BIE method often needs less computer time and core
storage than the FEM.

Although in most engineering applications the regions of interest
are on the boundary of the problem, it may be desired to obtain results
at interior points inside the_solution domain. Because there is no
further approximation in modelling the interior behaviour, the BIE
method produces more accurate solutions at these points than the FEM,
with the ability to concentrate only on the rggioﬁ of interest, result-
ing in a mdre efficient use of computer resources. - Further, the solu-
tion of nearly or exactly incompressiﬁle material problems presents
serious difficulties and errors when using the conventional displacement-
based FEM, because the general stress—strdin equations of elasticity
contain terms that become infinite as Poisson's ratio reaches 0.5, while
the BIE method accommwedates such problems without any difficulty due to
the nature of the integral equations used in the analysis.

Unlike the FENM, where the axisymmetric analysis is performed by
simply modifying the two-dimensional analysis, the BIE adaptation for
axisymmetric problems is far from being a stralghtforward modification
of the two- or three-dxmensional analysis. There are two alternative
approaches to arrive at the axisymmetric form of the BIE method. The
first is to integrate the three—dimensional fuadamgntal solution in a
circular path around the axis of rotational symmetry, while the second

‘assumes from the outset axisymmetrlc fundamental solutions. " In this
book, both approaches are used and shown to arrive at identical solu-
tions. The boundary is dlscretlsed into isoparametric quadratic ele-
ments, where both the geometry and variables are allowed to vary quad-



ratically over the boundary. These elements offer excellent modelling
capabilities, particularly in complex geometries and stress concentration
or crack problems. Due to the quadratic shape functions used - in these °
' elements, analytical integrations become impractical, and all integra-
tions are perfbrmed numerically using the Gaussian quadrature technique.

1.2 LITERATURE SURVEY - AXISYMMETRIC PROBLEMS

In 1963, Jaswon [1] and Symm [2] implemented the BIE method for
two-dimensional potential problems, using straight line elements to
.discretise the boundary and with the unknowns assumed constant over each
element. Rizzo [3] and Cruse [4] extended the technique to two- and
three-dimensional problems, respectively, using straightvlineband flat
triangular boundary elements with variables assumed to be coﬁétant over
each element. Improvements followed which allowed the variables to
change linearly [5,6], and then both the geometry and'variables to change
quadratically over each element [7,8].

The first applications of the BIE method to axisymmetric‘elasticity
were first effected by Kermanidis [9], Mayr [10] and Cruse,-et,al. [11],
using either constant or linear variation elements, sometimes in the
form of circular drcs. Further developments in elasticity included
the use of isoparametric quadratic elements by Bakr [12] and Bakr. &
Fenner [13,14], and the treatment of axisymmetric geometries subject to
arbitrary poundary conditions by Rizzo & Shippy [15], Rizzo, et al. [16],
" Nigam [17] and Mayr, et al. [18]. Several researchers gpplied the BIE
method to axisymmetric potential pioblems, including Wrobel & Brebbia
[19], Gﬁpta {20], Shippy, et al. [21], Bakr & Fenner [22], ‘Wrobel [231],
Yoshikawa & Tanaka [24] and Au & Brebbia (25]. Other applications in
axisymmetric prdblems included elastoplasticity [26, 271, viscoplasticity
[28], fracture mechanics [29], pressure vessels (30] and body force load-
ing. [31 32]. The axisymmetric formulation has also been included in
- somé recent BIE books (see, for example, reference [33]). This recent
extension of the BIE method to axisymmetric problems emphasises the
importance of such problems, and ‘the need for accurate solutions without
resorting to three-dimensional BIE analysis.

)

1.3 LAYOUT OF NOTES

This book begins with the application of the BIE method to axi-
symmetric potential problems,, and then extends the formulation to axi-



