CONCURRENT EUCLID,
" THE UNIX'SYSTEM,
AND TUNIS

R.C. Holt

CONCURRENT EUCLID,
THE UNIX'SYSTEM,
AND TUNIS

R.C. Holt

Computer Systems Research Group
University of Toronto

A

v

ADDISON-WESLEY PUBLISHING COMPANY
Reading. Massachusetts | Menlo Park. California
London | Amsterdam | Don Mills, Ontario | Sydney

This book is in the Addison-Wesley Series in Computer Science

Consulting Editor
Michael A. Harrison

Holt, R. C. (Richard C.), 1941—
Concurrent Euclid, UNIX, and TUNIS.

Bibliography: p.
1. Concurrent Euclid (Computer program language)
2. UNIX (Computer system) 3. TUNIS (Computer program)
I. Title
QA76.73.C64H64 1983 001.64'2 82-13742
ISBN 0-201-10694-9

#Unix is a trademark of Bell Laboratories.

SCRABBLE<:)is the registered trademark of Selchow & Righter
Company for its line of word games and entertainment services.
Reprinte®with permission.

Diagrams in this book were prepared by the Media Centre,
University of Toronto.

Reproduced by Addison-Wesley from camera-ready copy
prepared by the authors. .

Copyright © 1983 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher. Printed in the
United States of Amer;ca Published simultaneously in
Canada.

ISBN 0-201-10694-9
ABCDEFGHIJ-AL-898765432

PREFACE

This book introduces the art of concurrent programming. This partic-
ular type of programming, with several activities progressing in parallel, is
intellectually intriguing and is essential in the design of operating systems.
Unix is used as a case study for exploring operating system structures. The
Tunis implementation of Unix’s nucleus (kemel) is presented as an exam-
ple of a large concurrent program. Although the emphasis is on operating
systems, the design and implementation techniques presented apply as well
to other high performance, highly reliable software such as that in computer
networks, real time control and embedded microprocessor systems.

The first two chapters overview concurrent programming and operat-
ing systems. Chapters 3 and 4 introduce the Concurrent Euclid (CE)
language. Chapter S presents standard concurrency problems and their
solutions. Chapters 6, 7 and 8 concentrate on Unix. Chapter 9 gives the
structure of Tunis, a Unix-compatible nucleus written in CE. The last
chapter shows how to construct a small kemel to support concurrent
processes. An appendix gives the detailed specification of the Concurrent
Euclid language.

The required background of the reader is a familiarity with a high-
level language such as Pascal or Fortran as well as some familiarity with
computer architecture. The programs presented in this book are written in
Concurrent Fuclid. This is a language that is suited for develgping high
performance system software as well as for teaching. Student’s CE pro-
grams that use parallel processes are conveniently executable under systems
such as Unix/11 and Unix/VAX. Altematively, these programs can be
down-loaded and executed on microprocessors such as the MC68000 and
MC6809. The CE compiler is available from the CE Distribution

Manager, Computer Systems Research Group, University of Toronto,
Toronto. M5S 1A4, Canada. B

This book can serve as the main or subsidiary text for a course on
operating systems or systems programming. Alternately, it may be used as
a text book in a specialized course such as one on concurrent programming.

Acknowledgements. This book has evolved from an earlier book
"Structured Concurrent Programming with Operating Systems Applications",
which 1 co-authored with G.S. Graham, E.D. Lazowska and M.A. Scott.
The present book has been made possible due to their essential contribu-
tions to its predecessor. I want to thank the people who have taken the
trouble to suggest improvements in the earlier book; in particular the
detailed comments by S.S. Toscani have been helpful to me in preparing
this new book. J.C. Weber, S.G. Perelgut, D.R. Galloway, M.P. Mendell
and D.T. Barnard have helped by reading drafts of the new book.

The Concurrent Euclid language was designed by J.R. Cordy and
myself. This language is based on the Euclid language designed by B.W.
Lampson, J.J. Horning, R.L. London, J.G. Mitchell and G.J. Popek with
assistance from J.V. Guttag. B.A. Spinney, C.R. Lewis, B.W. Thomson,
and C.D. McCrosky contributed to the CE language design and/or its com-
piler. D.B. Wortman, D.R. Crowe and I.H. Griggs helped inspire CE’s
design by their roles as implementors (with J.R. Cordy and myself) of the
Toronto Euclid compiler.

P. Cardozo, M.P. Mendell, 1.J. Davis and G.L. Dudek have done MSc
projects involving Tunis design and implementation. S.W.K. Tjiang, D.R.
Galloway and D.T. Barnard have also contributed to the Tunis work. The
continuing interest of P.I.P. Boulton and E.S. Lee in the CE and Tunis
work has been important to its progress. The following have been students
in my graduate course in which we studied and evolved the Tunis design:
P. Cardozo, A. Curley, R.S. Gornitsky, J.S. Hogg, S.A. Ho-Tai, P.M.
McKenzie, J.1.. More, B.A. Spinney, B.W. Down, G.L. Dudek, D.R. Ings,
P. Kates, P.A. Matthews, M.P. Mendell, L.M. Merrill, R. Parker, B.R.J.
Waistra, H.E. Briscoe, D. Chan, L. DeMaine, E.L. Fiume, R.D. Hill, L.Z.
Zhou, S.G. Perelgut, and Y.C.L. Wong.

The terms VAX and PDP-11 are trademarks of the Digital Equipment
Corporation. Unix is a trademark of Bell Laboratories.

The information on Unix in this book is based upon widely available
malerials, particularly upon excellent articles by the authors of Unix (D.M.
Ritchie and K. Thompson). As they have stated, "The success of Unix lies
not so much in new inventions but rather in the full exploitation of a care-
fully selected set of fertile ideas..."

1.S. Weber has prepared the book for publication using a computer
‘ext editor and phototypesetter.

The research leading to CE and Tunis would not have been possible

yvithout the financial support of the Canadian Natural Sciences and
Engineering Research Council and of Bell Northern Research Ltd.

R.C. Holt
May 1982
Toronto

CONTENTS

1.

2.

CONCURRENT PROGRAMMING AND
OPERATING SYSTEMS

EXAMPLES OF CONCURRENCY

OPERATING SYSTEMS

COMMUNICATION IN OPERATING SYSTEMS
OPERATING SYSTEMS AND MONOLITHIC MONITORS
BASING AN OPERATING SYSTEM ON A KERNEL

AN EXAMPLE OPERATING SYSTEM

PROCESSES, PROCESSORS AND PROCEDURES
SUMMARY

BIBLIOGRAPHY

EXERCISES

CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

SPECIFYING CONCURRENT EXECUTION
DISJOINT AND OVERLAPPING PROCESSES
CRITICAL SECTIONS

MUTUAL EXCLUSION BY BUSY WAITING
SYNCHRONIZATION PRIMITIVES: SEMAPHORES
OTHER SYNCHRONIZATION PRIMITIVES
MESSAGE PASSING -

THE BLOCKING SEND

THE RENDEZVOUS

COMMUNICATING SEQUENTIAL PROCESSES
MONITORS

THE DEADLOCK PROBLEM

DETECTING DEADLOCK

SUMMARY

BIBLIOGRAPHY

EXERCISES

17

17
19
23
24
28
32
33
36
37
39
41
43
45
51
51
53

3. CONCURRENT EUCLID: SEQUENTIAL FEATURES 59

HISTORY 59
GOALS OF CONCURRENT EUCLID 60
COMPARISON WITH PASCAL 61
BASIC DATA TYPES 61
STRUCTURED DATA TYPES 62
‘LITERAL VALUES 63
THE 1I/0 PACKAGE 64
A COMPLETE CE PROGRAM 66
OTHER CONTROL CONSTRUCTS 67
RUNNING UNDER UNIX 69
A SIMPLE PROCEDURE 70
NESTING OF CONSTRUCTS 70
AN EXAMPLE MODULE 71
NAMING CONVENTIONS 73
RUNNING ON A BARE MICROPROCESSOR 74
NON-MANIFEST ARRAY BOUNDS 75
FUNCTIONS AND SIDE EFFECTS 76
POINTERS AND COLLECTIONS 78
ALIASING AND THE BIND STATEMENT 80
TYPE CONVERTERS 81
SEPARATE COMPILATION 84
LINKING PROGRAMS UNDER UNIX 85
SUMMARY 86
BIBLIOGRAPHY 88
EXERCISES 89
4. CONCURRENT EUCLID: CONCURRENCY FEATURES 93

SPECIFYING CONCURRENCY 93
RE-ENTRANT PROCEDURES 94
MUTUAL EXCLUSION 96
WAITING AND SIGNALING 98
DETAILS OF SIGNALING, WAITING

AND CONDITIONS 99
ASSERT STATEMENTS 100
PRIORITY CONDITIONS 100
AN EXAMPLE PROGRAM:

MANAGING A CIRCULAR BUFFER 101
SIMULATION MODE AND KERNELS 103

BASIC DEVICE MANAGEMENT 104

SIMULATION AND THE BUSY STATEMENT 105

SIMULATED TIME AND PROCESS UTILIZATION 107
PROCESS STATISTICS 108
SUMMARY 109
BIBLIOGRAPHY 110
EXERCISES 112
5. EXAMPLES OF CONCURRENT PROGRAMS 115
DINING PHILOSOPHERS 115
READERS AND WRITERS 122
SCHEDULING DISKS 127
A DISK ARM SCHEDULER 129
BUFFER ALLOCATION FOR LARGE MESSAGES 134
SUMMARY 137
BIBLIOGRAPHY 138
EXERCISES 139
6. UNIX: USER INTERFACE AND FILE SYSTEM 145
HISTORY AND OVERVIEW OF UNIX 145
TYPICAL CONFIGURATIONS 147
MAJOR LAYERS OF UNIX 147
SYSTEMS THAT ARE UNIX-COMPATIBLE 148
LOGGING IN AND SIMPLE COMMANDS 148
CREATING, LISTING AND DELETING FILES 149
THE DIRECTORY HIERARCHY 151
SPECIAL FILES 153
FILE PROTECTION 154
SYSTEM CALLS TO MANIPULATE FILES 155
INTERNAL FORMAT OF FILES 157
MOUNTING DISK PACKS 158
SUMMARY 159
BIBLIOGRAPHY 161
EXERCISES 162
7. UNIX: USER PROCESSES AND THE SHELL 163
THE ADDRESS SPACE OF A USER PROCESS 163
MANIPULATION OF USER PROCESSES 165
IMPLEMENTING THE SHELL 167

INPUT/OUTPUT RE-DIRECTION 168

BACKGROUND PROCESSING 169

PIPES AND FILTERS 170
SYSTEM CALLS TO SUPPORT PIPES 170
FILES CONTAINING COMMANDS 171
SYSTEM INITIALIZATION 172
SUMMARY 173
BIBLIOGRAPHY 174
EXERCISES 175
8. IMPLEMENTATION OF THE UNIX NUCLEUS 177
LAYOUT OF DATA ON DISKS 177
THE FLAT FILE SYSTEM VS. THE
TREE FILE SYSTEM 178
FORMAT OF DIRECTORIES 178
FORMAT OF I-NODES 178
BLOCK LISTS © 179
DESCRIPTORS FOR USER PROCESSES 181
LINKAGE FROM USER PROCESSES TO
DISK FILES 181
LINKAGE FROM USER PROCESSES TO
SPECIAL FILES 184
LINKAGE FROM USER PROCESSES TO
MOUNTED DISK PACKS 185
FILE SYSTEM CONSISTENCY 185
CONCURRENCY IN THE UNIX NUCLEUS 188
HANDLING INTERRUPTS 189
SUMMARY ’ 191
BIBLIOGRAPHY 192
EXERCISES 192
9. TUNIS: A UNIX-COMPATIBLE NUCLEUS 195
WHY TUNIS? 195
TENETS OF SOFTWARE ENGINEERING 196
THE LAYER STRUCTURE OF TUNIS 198
THE MAJOR LAYERS 199
THE ABSTRACTION OF ADDRESS SPACES 202
THE ASSASSIN PROCESS 202
AN EXAMPLE MODULE 203
PROGRAMMING CONVENTIONS 206

ENTRY POINTS OF THE TUNIS KERNEL 206

THE ENVELOPE AS GUARDIAN ANGEL
SUMMARY
BIBLIOGRAPHY

EXERCISES

10. IMPLEMENTING A KERNEL

APPENDIX: SPECIFICATION OF CONCURRENT EUCLID

INDEX

STRUCTURE OF A KERNEL
PROCESS/DEVICE COMMUNICATION
QUEUE MANAGEMENT

ENTRIES INTO THE KERNEL
SIMPLIFYING ASSUMPTIONS

A KERNEL FOR SINGLE CPU SYSTEMS
HANDLING INPUT AND OUTPUT

A KERNEL FOR THE PDP-11

A KERNEL FOR MULTIPLE CPU SYSTEMS
- SUPPORTING THE KERNEL’S VIRTUAL PROCESSOR 233

IMPLEMENTING KERNEL ENTER/EXIT
KERNELS FOR CE AND TUNIS
SUMMARY

BIBLIOGRAPHY

EXERCISES

THE SE LANGUAGE
CONCURRENCY FEATURES
SEPARATE COMPILATION

COLLECTED SYNTAX OF CONCURRENT EUCLID
KEYWORDS AND PREDEFINED IDENTIFIERS
INPUT/OUTPUT IN CONCURRENT EUCLID

PDP-11 IMPLEMENTATION NOTES
CE IMPLEMENTATION NOTES

207
208
209

210

213

213
215
216
218
219
220
224
225
230

234
236
237
238
238

243

245
264
269
272
283
284
290
294

299

Chapter 1

CONCURRENT
PROGRAMMING
AND OPERATING
SYSTEMS

Concurrent programming means writing programs that have several
parts in execution at a given time. The concept of concurreat or parallel
execution is intellectually intriguing and is essential in the design of com-
puter operating systems. This book covers the fundamentals of concurrent
programming using structured techniques. After an introduction to the
need for concurrent programming and its basic concepts, a notation called
monitors is presented and used for solving problems. involving asynchro-
nous program interactions. The concurrent algorithms in the book are
presented in the Concurrent Euclid (CE) programming language. It is a
language designed to support the development of highly reliable, high per-
formance systems programs.

After giving examples of concurrency, this chapter concentrates on
operating systems. Operating systems impiement concurrent programs by
sharing CPU time among several programs and use concurrent programs to
control resources and serve users.

EXAMPLES OF CONCURRENCY

In programming, and in other activities, concurrency problems can
arise when an activity involves several people, processes or machines
proceeding in parallel. We will give several examples of concurrency,
beginning with one that does not involve computers.

2 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

An example: activities in a large project. A large project such as the
construction of a building is accomplished by many workers carrying out
different tasks. These tasks must be scheduled, and one method of doing
this uses precedence charts, as shown here.

O

This example chart shows that in the beginning tasks T1 and T2 can both
be started. After T1 is done, T3 and T4 can be started, and when both of
them are done, TS can be started. The whole project is finished when T2
and T5 are done. As the next example will show, precedence charts can be
used to specify concurrency in computer programs.

There are two main reasons for using parallel tasks in this example.
First, there are many workers available and they must be allowed to work at
the same time (in parallel). Second, the project can be completed in less
elapsed time if tasks are allowed to overlap. In computer systems, analo-
gous reasons (many asynchronous devices and the need to shorten elapsed
time) may result in concurrent programming.

An example: independent program parts. Precedence charts can describe
possible concurrency in a computation. The expression (2*A) + ((C-D)/3)
can be evaluated sequentially (one operation at a time) by finding the pro-
duct, difference, quotient and sum, in that order. But parallelism is possi-
ble, because some parts of the expression are independent, as is shown in
this precedence, chart.

O~

EXAMPLES OF CONCURRENCY 3

Groups of statements, as well as expressions, may have independent
parts that can be executed in parallel. For example, the following loop writ-
ten in Pascal determines if *Jones’ is in a list by testing name[l] then
name[2] and so on.

fori:= 1 to size do
if nameli] = "Jones’ then
found := true

This loop could be executed by checking all of the names at the same time,
because the tests are independent. For a large computation, parallelism
such as this can minimize the elapsed time for completion.

As computing elements such as microprocessors become cheaper, it
becomes more and more attractive to split programs into several parailel
tasks. In the future we may find that computers are built as huge collec-
tions of tiny processing elements, analogous to building an elephant out of
a swarm of mosquitoes or bees, and we will need to know how to program
such contraptions.

An example: a simulation. Sometimes programs are written to simulate
parallel activities. For example, a program might simulate boats entering a
harbor; this program could predict the effects of increased boat traffic. A
good way to program this simulation is to have an asynchronous program
activity (a process) corresponding to each simulated activity (each boat).
Each process mimics its boat, and (he interaction of these processes models
the interaction of boats entering the harbor. Programming the simulation is
done by writing the constituent concurrent programs.

An example: control of external activities. Special purpose computer sys-
tems are used to control chemical processes such as the manufacture of
cement. Sensors transmit signals to the computer to report temperature,
pressure, rate of flow, etc. The computer in turn transmits signals that set
valves, control speeds, sound alarms, etc. The computer system also keeps
a log of its actions and prints reports. A computer system such as this
keeps track of many interrelated concurrent activities. One good way to
program such a system is to have a concurrent software process in the com-
puter for each external activity. A software process tracks its corresponding
activity; it is responsible for sending and receiving signals to and from the
activity. Programming this computer system is done-by writing the con-
current programs that observe and control the activities.

These examples have given various practical uses of concurrency.

” Qne of the most important examples of concurrent programming arises in

" operating systems. The next sections explain why this concurrency arises
and how it is handled.

D D T i U S an PR ANAMArATINMG CWUICTOYYS AT & Phes

4 CONCURRENT PROGRAMMING AND OPERA TING SYSTEMS

OPERATING SYSTEMS

Modern computer installations have many asynchronous hardware
corhponents, such as operator consoles, card readers, printers, disk drives,
tape drives and CPUs. The operating system must ensure that these com-
ponents are used efficiently and that they provide convenient service for the
users.

An operating system consists of a collection of software modules.
These modules receive requests from users (for example, to execute the
users’ programs) and must schedule the system’s components to satisfy
these requests.

The operating system may support multiprogramming, that is, it may
allow more than one user’s program to be in execution at a given time. To
support multiprogramming, the operating system must share the system’s
resources among the executing programs. Some resources, such as tape
drives, are exclusively allocated to a program, until the program terminates
or no longer needs the resource.

Other resources, such as the CPU, are shared dynamically, in a way
that gives the appearance that each program has its own virtual resource.
For example, the operating system may allocate a "slice” of CPU time to
one program, then to another program, and so on. This is called time slicing
and gives the appearance that each program has a virtual CPU, which is like
the physical CPU but somewhat slower. As a second example, the operat-
ing system may provide each program with a virtual memory. This is done
with the help of special hardware (for "paging" or "segmenting") that allows
the operating system to allocate physical memory only to the active parts of
programs.

There are two basic reasons why muitiprogramming is needed in com-
puter systems. The first is for efficient use of hardware resources and the
second is for quick response to users’ requests. First we will consider
efficiency. The system’s hardware components run in parallel at vastly
different speeds. For example, the time to process a single character may
vary from a tenth of a second for a slow console, to a thousandth of a
second for a printer, to a miliionth of a second for a CPU. Clearly, the
CPU should not be forced to waste time (100,000 of its operations) while a
conscle transmits a character. While a user is typing messages to a running
job, another job should be given the CPU. If a job is 1/O bound, spending
most of its time waiting for input/output devices, the spare CPU time can
be used by a compute bound job, which spends most of its time using the
CPU. If the system has a variety of equipment, a job that uses only a few
of the devices should not prevent concurrent use of other devices. These
examples show how multiprogramming provides more efficient use of

COMMUNICATION IN OPERATING SYSTEMS 5

computer equipment.

Apart from efficiency, multiprogramming allows the computer system
to respond quickly to users’ needs. Suppose a user has a short, urgent job
but a long-running job is already in the system. With multiprogramming,
the short job can run in parallel with the long one and can finish hours
before it. In interactive systems, a form of multiprogramming is necessary,
with one program for each user. The system is shared among the interac-
tive users and their programs so that each receives good response; this is
called time sharing. These examples show how multiprogramming allows
prompt attention to users’ needs.

COMMUNICATION IN OPERATING SYSTEMS

Operating systems must be organized so as to control hardware dev-
ices and run users’ programs. This section gives a simplified model of how
communication occurs among the devices, the operating system and the
users’ programs; the next two sections describe how operating systems are
organized to handle this communication.

An operating system controls an 1/0 device by sending it a start 1/0
command. If the device is a tape drive, the command may cause it to read a
record, putting the record’s characters into main memory. When the dev-
ice has carried out the command, it can send an interrupt signal back to the
CPU indicating that it is free to carry out another operation. This signal
can switch the CPU from a user’s job to the operating system; this allows
the operating system to send another command to the device before return-
ing the CPU to a user’s job.

User 1 @) @
Trap Completion

Operating
System

Start VO

Device 1 @ s e 0

v Meanwhile, each user’s job occasionally makes requests to the operat-
ing system, for example, to read from a terminal or to write a disk track.
The job makes a request by a trap or a system call instruction; this

Interrupt

6 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

instruction is like a subroutine call and transfers control from the user to
the operating system. Having received such a request, the system blocks
the job (gives it no more CPU time) until the requested action has been
completed Then the job is unblocked and allowed to continue executing.

There is usually an interrupting clock; it sends interrupt signals that
transfer control from a user’s job to the operating system. This allows the
system to implement time slicing by passing the CPU from user to user,
and to cancel a user’s job that is using excessive CPU time. Without the
interrupting clock, an infinite loop in one user’s job could prevent other
users (and the operating system) from using the CPU.

When a program is actually using the CPU, we say it is running.
When it is waiting for a request to be serviced, we say it is blocked. When a
program would be running except that the CPU is allocated to another pro-
gram, we say it is ready. The operating system maintains a queue of the
programs that are ready. This transition diagram shows how the states of a
program change:

Dispatch System call

interrupt

Blocked

We say the operating system dispatches a program when it lets it run, by
giving it the CPU.

A trap generally causes a program to be blocked; however in son.e
instances (not shown in the diagram) if the operating system can immedi-
ately satisfy the request, the user program is again dispatched and no block-
ing occurs. Other than by a trap, the only way a running program loses the
CPU is by an interrupt. A clock interrupt may signal the end of the
program’s time slice, or an I/O interrupt may allow another program to run.
In a system with only one CPU, at most one program can be in the running

