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PREFACE

This book introduces the art of concurrent programming. This partic-
ular type of programming, with several activities progressing in parallel, is
intellectually intriguing and is essential in the design of operating systems.
Unix is used as a case study for exploring operating system structures. The
Tunis implementation of Unix’s nucleus (kemel) is presented as an exam-
ple of a large concurrent program. Although the emphasis is on operating
systems, the design and implementation techniques presented apply as well
to other high performance, highly reliable software such as that in computer
networks, real time control and embedded microprocessor systems.

The first two chapters overview concurrent programming and operat-
ing systems. Chapters 3 and 4 introduce the Concurrent Euclid (CE)
language. Chapter S presents standard concurrency problems and their
solutions. Chapters 6, 7 and 8 concentrate on Unix. Chapter 9 gives the
structure of Tunis, a Unix-compatible nucleus written in CE. The last
chapter shows how to construct a small kemel to support concurrent
processes. An appendix gives the detailed specification of the Concurrent
Euclid language.

The required background of the reader is a familiarity with a high-
level language such as Pascal or Fortran as well as some familiarity with
computer architecture. The programs presented in this book are written in
Concurrent Fuclid. This is a language that is suited for develgping high
performance system software as well as for teaching. Student’s CE pro-
grams that use parallel processes are conveniently executable under systems
such as Unix/11 and Unix/VAX. Altematively, these programs can be
down-loaded and executed on microprocessors such as the MC68000 and
MC6809. The CE compiler is available from the CE Distribution



Manager, Computer Systems Research Group, University of Toronto,
Toronto. M5S 1A4, Canada. B

This book can serve as the main or subsidiary text for a course on
operating systems or systems programming. Alternately, it may be used as
a text book in a specialized course such as one on concurrent programming.
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Chapter 1

CONCURRENT
PROGRAMMING
AND OPERATING
SYSTEMS

Concurrent programming means writing programs that have several
parts in execution at a given time. The concept of concurreat or parallel
execution is intellectually intriguing and is essential in the design of com-
puter operating systems. This book covers the fundamentals of concurrent
programming using structured techniques. After an introduction to the
need for concurrent programming and its basic concepts, a notation called
monitors is presented and used for solving problems. involving asynchro-
nous program interactions. The concurrent algorithms in the book are
presented in the Concurrent Euclid (CE) programming language. It is a
language designed to support the development of highly reliable, high per-
formance systems programs.

After giving examples of concurrency, this chapter concentrates on
operating systems. Operating systems impiement concurrent programs by
sharing CPU time among several programs and use concurrent programs to
control resources and serve users.

EXAMPLES OF CONCURRENCY

In programming, and in other activities, concurrency problems can
arise when an activity involves several people, processes or machines
proceeding in parallel. We will give several examples of concurrency,
beginning with one that does not involve computers.



2 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

An example: activities in a large project. A large project such as the
construction of a building is accomplished by many workers carrying out
different tasks. These tasks must be scheduled, and one method of doing
this uses precedence charts, as shown here.

O

This example chart shows that in the beginning tasks T1 and T2 can both
be started. After T1 is done, T3 and T4 can be started, and when both of
them are done, TS can be started. The whole project is finished when T2
and T5 are done. As the next example will show, precedence charts can be
used to specify concurrency in computer programs.

There are two main reasons for using parallel tasks in this example.
First, there are many workers available and they must be allowed to work at
the same time (in parallel). Second, the project can be completed in less
elapsed time if tasks are allowed to overlap. In computer systems, analo-
gous reasons (many asynchronous devices and the need to shorten elapsed
time) may result in concurrent programming.

An example: independent program parts. Precedence charts can describe
possible concurrency in a computation. The expression (2*A) + ((C-D)/3)
can be evaluated sequentially (one operation at a time) by finding the pro-
duct, difference, quotient and sum, in that order. But parallelism is possi-
ble, because some parts of the expression are independent, as is shown in
this precedence, chart.

O~
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Groups of statements, as well as expressions, may have independent
parts that can be executed in parallel. For example, the following loop writ-
ten in Pascal determines if *Jones’ is in a list by testing name[l] then
name[2] and so on.

fori:= 1 to size do
if nameli] = "Jones’ then
found := true

This loop could be executed by checking all of the names at the same time,
because the tests are independent. For a large computation, parallelism
such as this can minimize the elapsed time for completion.

As computing elements such as microprocessors become cheaper, it
becomes more and more attractive to split programs into several parailel
tasks. In the future we may find that computers are built as huge collec-
tions of tiny processing elements, analogous to building an elephant out of
a swarm of mosquitoes or bees, and we will need to know how to program
such contraptions.

An example: a simulation. Sometimes programs are written to simulate
parallel activities. For example, a program might simulate boats entering a
harbor; this program could predict the effects of increased boat traffic. A
good way to program this simulation is to have an asynchronous program
activity (a process) corresponding to each simulated activity (each boat).
Each process mimics its boat, and (he interaction of these processes models
the interaction of boats entering the harbor. Programming the simulation is
done by writing the constituent concurrent programs.

An example: control of external activities. Special purpose computer sys-
tems are used to control chemical processes such as the manufacture of
cement. Sensors transmit signals to the computer to report temperature,
pressure, rate of flow, etc. The computer in turn transmits signals that set
valves, control speeds, sound alarms, etc. The computer system also keeps
a log of its actions and prints reports. A computer system such as this
keeps track of many interrelated concurrent activities. One good way to
program such a system is to have a concurrent software process in the com-
puter for each external activity. A software process tracks its corresponding
activity; it is responsible for sending and receiving signals to and from the
activity. Programming this computer system is done-by writing the con-
current programs that observe and control the activities.

These examples have given various practical uses of concurrency.

” Qne of the most important examples of concurrent programming arises in

" operating systems. The next sections explain why this concurrency arises
and how it is handled.

D D T i U S an PR ANAMArATINMG CWUICTOYYS AT & Phes



4 CONCURRENT PROGRAMMING AND OPERA TING SYSTEMS

OPERATING SYSTEMS

Modern computer installations have many asynchronous hardware
corhponents, such as operator consoles, card readers, printers, disk drives,
tape drives and CPUs. The operating system must ensure that these com-
ponents are used efficiently and that they provide convenient service for the
users.

An operating system consists of a collection of software modules.
These modules receive requests from users (for example, to execute the
users’ programs) and must schedule the system’s components to satisfy
these requests.

The operating system may support multiprogramming, that is, it may
allow more than one user’s program to be in execution at a given time. To
support multiprogramming, the operating system must share the system’s
resources among the executing programs. Some resources, such as tape
drives, are exclusively allocated to a program, until the program terminates
or no longer needs the resource.

Other resources, such as the CPU, are shared dynamically, in a way
that gives the appearance that each program has its own virtual resource.
For example, the operating system may allocate a "slice” of CPU time to
one program, then to another program, and so on. This is called time slicing
and gives the appearance that each program has a virtual CPU, which is like
the physical CPU but somewhat slower. As a second example, the operat-
ing system may provide each program with a virtual memory. This is done
with the help of special hardware (for "paging" or "segmenting") that allows
the operating system to allocate physical memory only to the active parts of
programs.

There are two basic reasons why muitiprogramming is needed in com-
puter systems. The first is for efficient use of hardware resources and the
second is for quick response to users’ requests. First we will consider
efficiency. The system’s hardware components run in parallel at vastly
different speeds. For example, the time to process a single character may
vary from a tenth of a second for a slow console, to a thousandth of a
second for a printer, to a miliionth of a second for a CPU. Clearly, the
CPU should not be forced to waste time (100,000 of its operations) while a
conscle transmits a character. While a user is typing messages to a running
job, another job should be given the CPU. If a job is 1/O bound, spending
most of its time waiting for input/output devices, the spare CPU time can
be used by a compute bound job, which spends most of its time using the
CPU. If the system has a variety of equipment, a job that uses only a few
of the devices should not prevent concurrent use of other devices. These
examples show how multiprogramming provides more efficient use of
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computer equipment.

Apart from efficiency, multiprogramming allows the computer system
to respond quickly to users’ needs. Suppose a user has a short, urgent job
but a long-running job is already in the system. With multiprogramming,
the short job can run in parallel with the long one and can finish hours
before it. In interactive systems, a form of multiprogramming is necessary,
with one program for each user. The system is shared among the interac-
tive users and their programs so that each receives good response; this is
called time sharing. These examples show how multiprogramming allows
prompt attention to users’ needs.

COMMUNICATION IN OPERATING SYSTEMS

Operating systems must be organized so as to control hardware dev-
ices and run users’ programs. This section gives a simplified model of how
communication occurs among the devices, the operating system and the
users’ programs; the next two sections describe how operating systems are
organized to handle this communication.

An operating system controls an 1/0 device by sending it a start 1/0
command. If the device is a tape drive, the command may cause it to read a
record, putting the record’s characters into main memory. When the dev-
ice has carried out the command, it can send an interrupt signal back to the
CPU indicating that it is free to carry out another operation. This signal
can switch the CPU from a user’s job to the operating system; this allows
the operating system to send another command to the device before return-
ing the CPU to a user’s job.

User 1 @ ) @
Trap Completion

Operating
System

Start VO

Device 1 @ s e 0

v Meanwhile, each user’s job occasionally makes requests to the operat-
ing system, for example, to read from a terminal or to write a disk track.
The job makes a request by a trap or a system call instruction; this

Interrupt
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instruction is like a subroutine call and transfers control from the user to
the operating system. Having received such a request, the system blocks
the job (gives it no more CPU time) until the requested action has been
completed Then the job is unblocked and allowed to continue executing.

There is usually an interrupting clock; it sends interrupt signals that
transfer control from a user’s job to the operating system. This allows the
system to implement time slicing by passing the CPU from user to user,
and to cancel a user’s job that is using excessive CPU time. Without the
interrupting clock, an infinite loop in one user’s job could prevent other
users (and the operating system) from using the CPU.

When a program is actually using the CPU, we say it is running.
When it is waiting for a request to be serviced, we say it is blocked. When a
program would be running except that the CPU is allocated to another pro-
gram, we say it is ready. The operating system maintains a queue of the
programs that are ready. This transition diagram shows how the states of a
program change:

Dispatch System call

interrupt

Blocked

We say the operating system dispatches a program when it lets it run, by
giving it the CPU.

A trap generally causes a program to be blocked; however in son.e
instances (not shown in the diagram) if the operating system can immedi-
ately satisfy the request, the user program is again dispatched and no block-
ing occurs. Other than by a trap, the only way a running program loses the
CPU is by an interrupt. A clock interrupt may signal the end of the
program’s time slice, or an I/O interrupt may allow another program to run.
In a system with only one CPU, at most one program can be in the running



