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Preface

This book presents the general theories and principles of stress and strain for
practical application. The primary intention is to provide a reference that meets
the daily needs of the design engineer. The solutions and data required in engi-
neering practice are often scattered through an extensive body of literature, and
are not presented in a form that allows convenient application to the problem at
hand. This handbook draws information from many sources into a useful and
convenient single volume. Tedious derivations and detailed explanation of for-
mulas are omitted. The data are presented in tables and graphs along with sev-
eral examples to illustrate actual applications.

The scope of the book is indicated by the contents. It covers beams, frames,
columns, beam-columns, plates, rings, torsion, shells, stability, and thermal
stress. For each topic the general prmclples and theories are stated, followed by
extensive tables and graphs for use in calculation of stress and strain. The data
are arranged to provide a means of using general theories to solve practlcal engi-
neering problems.

I express my gratitude to Mr. W. Yu and Dr. K. Pajouhi, who generously re-
viewed the manuscript; and to Mr. J. Garcia, who drew most of the graphs and
illustrations. Finally, I would like to say that although every effort has been
made to avoid errors, it is possible some could exist. [ will be grateful for any

suggestions you may have concerning needed correcuons
Teng H. Hsu
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Ks

Cross-sectional area

Coefficients of deflection

Bending stress coefficients

Coefficients of slope

Bending stress coefficient for circular plates

Coefficient of constraint in elastic stability, numerical factor

Torsional stiffness of circular section

Reduction factor applied to bending term in interaction for-
mula and dependent upon curvature caused by applied mo-

ments

Torsional stiffness of non-circular section

Warping constant of a section

Numerical factor, tlexural rigidity of plate or shell

Modulus of elasticity in tension and compression, numerical
factor ‘ :

Tangent modutus ‘
Axial stress permitted in the absence of bending moment
Bending stress permitted in the absence of axial force
Euler stress divided by factor of safety

Specified minimum yield stress of steel

Buckling stress of a column containing residual stresses
Modutus of elasticity in shear

Horizontal thrust of a pinned and built-in arch

Moment of inertia of a section

Moment of inertia of the elastic portion of a section
Polar moment of inertia, torsional constant

Effective length factor

Moment coefficients of a circular ring

Deflection coefficient of a circular ring

Coefficients of end moments

Torsional factors

Stress concentration factor
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Deflection coefficient in x and y, directions respectively
Force factors in shell S

Stress factor in shell

Force and shear factors

Displacement factor

Span length

Moment

End moments

Bending moments per unit length of plate or shell sections
Twisting moment per unit length of plate or shell sections 7
Radial and tangential moments )

Torsional moment

Normal and shearing forces per unit length of shell sections
Membrane forces per unit length of shell $ections
Applied load B
Critical load '

Euler load

Shearing force per unit length of plate or shell sections
Shearing force per unit length of cylindrical section
Reactions ’

Inside and outside radii of a curved beam respectively
Radius of curvature of the neutral axis

Membrane tension

Static shear on beam _ -

Volume of membrane hill of circular section

Volume of membrane hill of non-cucular sectiens

Shear force introduced to a flange of 1 beam subjected to an
end torsion

Strain energy

Distances from supports to loading point, distances
Distance ;
Eccentricity

Stress

Axial and bending stress, respectively

Bending stresses induced by M, and M,, respectively
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u. v, w

X. Y, Z

A function of parameter u for plate deflection
A function of parameter u for plate bending
Axial load factor for beam-column (k- = P/El)
Length, span

Natural logarithm

A parameter which gives the number of half-waves into
which a plate buckles

Intensity of distributed load, pressure

Radius of gyration, radius, radius of curvature of shetl
Radius of curvature of the middle surface of a circular plate
Radius of gyration with respect to x and y axes. respectively
Shear stresses

Thickness

Axial load factor for beam-colums (u = ki), numerical factor
Displacements in x, y, z directions

Rectangular coordinates

Greek Symbols

x

Ex, €
1
P
Px> Py

VYxzs Vyz
[

Oxs ‘_7y
O

T

Angles, coefficient of thermal expansion, numerical factors
Numerical factor or coefficient

Shearing unit strain, specific gravity

Deflection, displacement

Horizontal and vertical displacements

Unit normal strain

Angle, polar ¢oordinate, the angle of twist per unit length of
section ’

Unit normal strains in x and y directions
Poisson’s ratio
Radius of curvature

Radii of curvature of the middle surface of a rectangular
plate in the xz and yz planes

Shear strains in xz and yz planes |

‘Unit normal stress

Unit normal stresses in x and y directions
Critical stress '
Unit shear stress



Tws Tyer Tu  Unit shear stresses on planes perpendicular to the x,y and z
axes and parallel to the y,z and x axes

¢ Angle, angular coordinate
x Change of curvature in shell

X« Twist of the middle surface of shell
¢ Saint-Venant’s torsion function

o, Circumferential stress

Y Numerical factor in calculation of reduction factor C,, for
compression members braced against joint translation
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Chapter 1

Flexure of Beams

BENDING OF BEAMS [1,2]

Forces or moments acting on a beam impart deflections perpendicular
to the longitudinal axis of the beam and set up normal and shearing
stresses on any cross section of the beam. It is convenient to imagine a
beam being composed of an infinite nusber of fibers. The surface on the
beam containing fibers that do not undergo any stress is called the neutral
surface. The intersection ot the neutral surface with any cross section of
the beam perpendicular to its longitudinal axis is called the neurral axis.
All fibers on one side of the neutral axis are in tension and those on the
opposite side are in compression.

It all fibers in the beam are acting within the elastic range of the mate-
rial, the following relations exist:

The bending stress at any point of a section is f,.

_ My
I

f, (1-1)

where M is the bending moment at the section containing y, and y is the
distance from the neutral axis to the point.
The shear stress at any point of a section is s,.

\Y vQ
= —\lyda= i-2
> Ibsy T (1-2)

where V = shear at the section
. da = area of that part of the section above the point
"~y = distance from the neutral axis to the centroid of da
b = width of the beam
Q = first moment of the area da about the neutral axis

it

The radius of curvature of the elastic curve is R.
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El
R = - 1-3
M (1-3)

The general differential equation of the elastic curve is:

M= Y (1-4)
dx-

The relations between the bending moment and the shear are:

dM :
Vo= (1-5a)

dx
M = § vV dx (1-5b)

The strain energy of flexure is U.

M2
U = | — dx 1-6;
V55 (1-6)
Example 1-1

A steel wire /32 in. in diameter is coiled around a pulley 20 in. in di-
ameter; calculate the maximum bending stress set up in the wire.

E = 30 x 10° kips/in.?

Radius of curvature R = 20/2 = 10 in.
Normal strain ¢ = y/R

Maximum strain e,,, = 1/640 = 0.00156 in.

Maximum stress 0., = Eenax = 30 X 10° X 0.00156
46.88 kips/in.”

Example 1-2

If the greatest vertical shear of a rectangular beam is V, prove the max-
imum shear stress is 1.5 times the average shear stress.

From Equation 1-2,
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V/A is the average shear stress of the section with vertical force V.
ELASTIC DEFLECTION OF BEAMS [3)

The deformation of a beam is expressed in terms of the deflection of
the beam from its original unioaded position. The deflection is measured
from the original neutral surface to the neutral surface of the deformed
beam. The configuration of the deformed neutral surface is known as the
elastic curve of the beam.

Design specifications frequently limit the detlections as well as the
stresses. It is essential that the design engineer be able to calculate de-
flections, and numerous methods are available for the determination of
beam deflections.

Double-Integration Method
For a given beam, if the Joad w, at a point x can be expressed mathe-

matically as a function of x, and if such load condition is known for the
entire beam, then

Vo= [w,odx (1-7a)
M, = |V, dx (1-7b)
g, = SI\;I dx (1-7¢)
y, = je‘E%i = jj%dx (1-7d)

It 1s assumed that the beam is acting in the elastic range and that the de-
flections caused by shearing action are negligible compared to those
caused by bending action.

Example 1-3

Determine the maximum deflection of a cantilever beam subject to a
uniform load of w Ib per unit length, as shown in Figure 1-1.

M, = wx*/2



4 Stress and Strain Data Handbook

Y

}

N\

IO

Figure 1-1. Cantilever beam for
I Example 1-3.
X
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>

From Equations 1-7¢ and 1-7d,
El 6, = §M dx = wx'6 + C,
Ely, = 5 SMX dx = s(wx3/6 + C)dx

Ely,

it

wx¥24 + Cix + C,
atx =6 6, =0 C; = —wl/6
atx =40 y, =0 Cy= w6 — wi/24 = wi*/8
at x = 0, Y = Vi
Ymax = Co/El = we*(8ED
Moment-Area Method
The first moment-area theorem states that the angle between the tan-

gents at a and b of a deformed beam is equal to the area of the moment
diagram between a and b, divided by EI:

*—i dx (1‘83)

The second moment-area theorem states that the vertical distance from
point b of the deformed beam to the tangent at point a of the beam equals
the moment with respect to b of the area of the bending moment diagram
between a and b, divided by El:

— x dx (1-8b)
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Example 1-4

Determine the deflection of the free end of the cantilever beam in Ex-
ample 1-3 using the moment-area method. The elastic curve and moment
diagram are shown in Figure 1-2.

Area of the M/EI diagram = w{*/6
Moment with respect to b = w{*/8
6 = wi*/8EI

Conjugate Beam Method

In using this method, the moment diagram of the real beam is con-
structed, and a conjugate beam 1s then set up. It is loaded with the M/EI
of the real beam. The vertical shear at any point of the conjugate beam
equals the slope of the real beam at the same point. The bending moment
at any point of the conjugate beam equals the deflection of the real beam
at the same point. The boundary conditions of the conjugate beam should
be selected so that the previous statements are satisfied.

Example 1-5

Determine the deflection and slope at the tip of a cantilever beam
loaded by a concentrated force P, as shown in Figure 1-3.

ANINEERINRNENNE

-

o
Q

Z

Figure 1-2. Elastic curve and moment diagram of a cantilever beam
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E1

Figure 1-3. Cantilever beam for Example 1-5.

Shear at A’ = Pa’/(2El)

2 2 2
Moment at A’ = E—(P - E) = I—)El - ?f)
2E] 3 2EL 6El
Pa’
Slope at ti 0 = -—
P P 2EI
— 2 3 3
Deflection at tip 6 = Pa’t + Pi
2El 6E]

Virtual Work Method

This method is used frequently for finding the deflection of a point on
the beam. A unit virtual load is placed on the beam at the point where
derlection is desired. Virtual moments caused by the unit load are deter-
mined along the beam. The internal energy of the beam after deflection

is determined by integration. This is set equal to the external work done
by the unit load.

M,m,

Internal energy U = S——_I dx
c
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Work done W = 1 X y,

j Mam, i (1-9)
El

Yo

where m = virtual bending moment at any point caused by 1
M = real bending moment at the same point

Example 1-6

Solve Example 1-4 using virtual work method.

A unit load is placed at the tip of a beam as shown in Figure 1-4.

Internal energy = SM"LH‘ X = SWX} x = W
&y El 2El 8EI

Work done = 1 Xy =y

wi?

Y = SE

X g .

.

INERERNNEN RN

Figure 1-4. Cantilever beam for Example 1-6.



