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INTRODUCTION

In the last decades, chemical physics has attracted an everincreas-
ing amount of interest. The variety of problems, such as those
of chemical kinetics, molecular physics, molecular spectroscopy,
transport processes, thermodvnamics, the study of the state of
matter, and the variety of experimental methods used, makes the
great development of this field understandable. But the consequence
of this breadth of subject matter has been the scattering of the
relevant literature in a great number of publications.

Despite this variety and the implicit difficulty of exactly defining
the topic of chemical physics, there are a certain number of basic
problems that concern the properties of individual molecules and
atoms as well as the behavior of statistical ensembles of molecules
and atoms. This new series is devoted to this group of problems
which are characteristic of modern chemical physics.

As a consequence of the enormous growth in the amount of
information to be transmitted, the original papers, as published
in the leading scientific journals, have of necessity been made as
short as is compatible with a minimum of scientific clarity. They
have, therefore, become increasingly difficult to follow for anyone
who is not an expert in this specific field. In order to alleviate this
situation, numerous publications have recently appeared which
are devoted to review articles and which contain a more or less
critical survey of the literature in a specific field.

An alternative way to improve the situation, however, is to ask
An expert to write a comprehensive article in which he explains.
his view on a subject freelvand without limitation of space. The
emphasis in this case would be on the personal ideas of the author.
This is the approach that has been attempted in this new series.
We hope that as a consequence of this approach, the series may
become especially stimulating for new research.

Finally, we hope that the style of this series will develop into
something more personal and less academic than what has become
the standard scientific style. Such a hope, however, is not likely to
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vi INTRODUCTION

~be completely realized until a certain degree of maturity has been
attained — a process which normally requires a few years.

At present, we intend to publish one volume a year, but this
schedule may be revised in the future.

In order to proceed to a more effective coverage of the different
aspects of chemical physics, it has seemed appropriate to form an
editorial board. I want to express to them my thanks for their
cooperation.

I. PRIGOGINE
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I. INTRODUCTION

Differential equations, which relate the probabilities of locations
of particles in a system with some prescribed initial probability
distribution, can be expressed in two ways. One approach makes
use of the continuum assumption, which leads to equations such as
Fick’s equation for diffusion. The other treats the system as =
random-walk problem, which leads to a type of difference equation
involving the transition probabilities of the particles. Generally the
continuum approach fails to relate accurately the behavior of
particles in terms of transition probabilities involved in the trans-
port processes. It is, therefore, desirable to treat problems by the
latter approach.

The “random-walk treatment” is especially necessary for de-
scribing consecutive reactions in chemical kinetics8, the relaxation of
a system of a harmonic oscillator?® in a vibrational non-equilibrium
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distribution, the probable nucleation mechanism in condensed
systems,3 some problems connected with diffusion processes,*! and,
in general, the study of non-equilibrium rate processes. Attempts to
obtain the general solution of the difference equation starting from
different assumptions has been made by various authors. Eyring
and Zwolinski!'® used a model which describes qualitatively the
deviation of the rate constant based on the “equilibrium viewpoint™
from that based on the ‘‘non-equilibrium viewpoint.” The model
takes account of two energy levels for both reactants and products
with arbitrarily assigned rate constants. The extension of this
four-level approach to that of N-level approach was suggested by
Shuler, Zwolinski, and Eyring®? in describing microscopic non-
equilibrium chemical kinetics. Montroll and Shuler? applied the
“Pauli equation’’® (a linear matrix difference equation involving
the first-order derivatives of time) in order to extend the Zwolinski-
Eyring model to more realistic problems; i. e., they treated the
decomposition of diatomic molecules, by introducing the Landau-
Teller'® tramsition probabilities for the linear perturbation of
diatomic molecules. In this case, the method of diagonalizing the
matrix appearing in the transport equation is successful in a certain
aspect, for the recursion formula of the Gottlieb polynomialsi¢ can
be related to a set of recursion formulas for eigenvectors of the
matrix having elements which are the Landau-Teller transition
probabilities. The concentration change with respect to time in this
case can be expressed as a linear combination of the Gottlieb
polynomials. Further extension of this treatment in this direction
has encountered the mathematical difficulty of solving the roots of
the Gottlieb polynomial, /y ;(u) = 0. Thus, only the asymptotic
cases can be discussed satisfactorily. The extension along this Jine
using a Morse harmonic oscillator with the nearest and the next
nearest neighbor transition probabilities was discussed by Kim.!?

Eyring and his associates apply similar difference equations to
diffusion processes. In particular, Zwolinski, Eyring, and Reese!
developed a theory for the diffusion in a steady state and for the
permeability of membranes by considering molecular jumps from
one equilibrium position to another. The theory was successfully
applied to the permeability data of water, aliphatic alcohols, and
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amides through animal and plant cells. Further theoretical consid-
eration of the multi-barrier kinetics for diffusion processes was made
by Parlin and Eyring,* and Giddings and Eyring.’® The equations
derived by these authors were, however, limited by the steady-state
assumption and to nearest-neighbor transitions.

Any multi-barrier process (a random-walk problem) has a relaxa-
tion time associated with each microscopic jump. Thus, the steady-
state approach fails to predict the transients during the initial
period. The appearance of induction periods is frequently observed
in chain reactions.® The induction period occurs also in the recrystal-
lization of cold worked aluminum.! These induction periods are
understandable in terms of the multi-barrier processes. Further
interest in the random-walk treatment lies in the fact that time-
dependence of concentration changes in various systems can be
predicted. |

By solving characteristic equations associated with the matrix
occurring in the transport equation, we shall derive the general,
non-steady-state solutions corresponding to several multi-barrier
potential profiles which are physically important. The expression
thus obtained will be used for calculating the mean first passage
time of a particle in the random-walk process and the time-depen-
dent concentration in a particular potential well.

II. RANDOM-WALK AND MULTI-BARRIER KINETICS

A fairly general transport equation for the random walk of
particles with absorbing and reflecting barriers and with sources
can be represented as follows:

N N+1
fs = 3 kai €= 3 biaC + Zen (1a)
$= fm
de,.
:MzoAnlc + (lb)
where ,
N+1
Api= b+ {3, k,;-) Bus )
1=0 ]

kiiEO
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Here k,; denotes the transition probability (for convenience, the
transition probability per unit time will be called just the transition
probability) from the 7th state to the nth; C,(f) is the concentration
(or the probability for finding the particles when C,(¢} is normalized)
of the particles at the nth state at time ¢ (see Figure 1); the first
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Fig. 1. Potential profile for an arbitrary multi-barrier system,

term on the right hand side of (la) is the rate of increment of C,,
the second is the rate of decrement of C,, and the last is the rate of
production (or destruction) of C,, if there exists an external source
of the particles at the nth well. The assumptions involved in
solving (1) will be stated next.

(i) It is assumed that no particle can jump backwards after it
reaches the (N + 1)th well; this assumption is taken to guarantee
the positive definiteness of the matrix in (2). The proof for the
positive definiteness is necessary to assure that the eigenvalues
which appear in the exponents of the general solution of the dif-
ferential equation (i) have positive values, and that the solutions ob-
tained are not physically inconsistent. In a Iater section of this paper,
a generalization to include any small perturbation in matrix 4 will
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be given. Physically, the introduction of the point of no return, i.e.,
the (N-+4-1)th well, is necessary to explain that a steady-state flux
is achieved after an initial transient period. In the case when the
potential profile extends to infinity, the introduction of the point
of no return is automatically satisfied; and in the case where
by yor(m=0,1 2, ...) is small compared to other transition
probabilities, the assumption of the zero backward-transition
probabilities for the (V4 1)th well is a very good approximation.
For instance, in the diffusion of particles through a membrane, the
backward-jump probability of a particle after it has completed
travelling through the membrane will be negligible if the rate process
under consideration is for passage through the membrane.

(ii) The transition probabilities are assumed to be independent
of time and concentration. This assumption excludes applicability
of the solution to the multi-barrier systems where the probabilities
are dependent on time and concentration. However, fairly good
approximate conclusions may be drawn from this approach to
problems in which the transition probabilities are dependent on the
variables concentration and time. The instances of transition
probabilities independent of concentration and time occur in uni-
molecular consecutive reactions in chemical kinetics, diffusion
problems, transitions in vibrational levels of a diatomic molecule,
and the cascading decays of nuclei such as the uranium-radium
series (4n -+ 2). The effects of time and concentration on the transi-
tion probabilities can be treated by a perturbation method if
necessary.

(iii) A microscopic reversibility between the 7th and jth states is
assumed. This approach is open to thecretical question; however
all the empirical data agree with this assumption within the range
of our interest. Chandrasekhar,2 Montroll and Shuler,? and Kim??
applied the principle of the microscopic reversibility to stochastic
processes. The proof or disproof of the validity of the microscopic
reversibility in actual rate processes has not yet been carried out
successfully. The assumption of Onsager’s reciprocal relation for
transition probabilities®® or the principle of detailed balance bet-
ween two connecting states is another expression of this assumption.
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Under assumption (iii),
K" = (kiilkﬂ') = ¢—(Fi—F){RT
where K, is the equilibrium constant between the ith and the
jth potential wells. Then, we obtain the following relation
kg3 =kyq, : = el~FlRD (3)
In the case of diffusion, the reaction coordinate in Figure 1
represents the distance through which the particle must travel; if
the unit processes are the consecutive reactions involving multi-
barriers, the reaction coordinate represents the state of the system
at a particular configuration and at a particular time. In describing
multi-barrier kinetics, one should note that the free energy potential
profiles have significance only at the minima and at the activated
states. The shapes of the curves relating these maxima and minima
do not play an important part in the cases here considered, since
the entropy in the region connecting a minimum and an activated
state is of no interest and is undefined.
The matrix A, Equation (2), has the following properties:

a. Aiig;= A (4)

b. Positive eigenvalues (5)
N

c. Dvnl gty =08y, 8,=1lifi=47; =0if i4j (6)
n=0

as shown by other investigators.1?.2% Here ® is an eigen-
vector of A with eigenvalue 4;, i. e.

Azp(‘) = Z.iy;l‘) (7)

In the case of the degeneracy, p®scan be properly orthogonal-
ized to satisfy (6). Further, A has the following properties:

N .. I
a. S 0.9 427 9, = b ®)
=0

e. If the matrix contains only the nearest-neighbor transition prob-
abilities, the corresponding eigenvectors and eigenvalues are
related by the equation:

N
S0 T e g = Ry )™ 7=0,1,2,..,N  (9)

n=0

(cf. Appendix I).
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Equation (8) follows from the following argument. Since 4 is a
non-singular matrix of rank N +1, the square matrix P defined in
(10a) also is of the N -1 rank; thus it has a unique inverse P-!
which satisfies the relation P-1P = PP-! = I, From Equations (6),
(10a), and P-!P == I, one obtains (10b). The substitutions of (10a)
and (10b) into PP-1 = ] yields Equation (8).

@ (Py) = (9."); (b)  (Py~t) = (9;9¢,7) (10)

The transport equation (1) reduces to that proposed by Eyring
and co-workers#!.39,13 at a steady state with only nearest-neighbor
transition probabilities. By setting @, ==0,8,, and dC,(#)/df = 0 at
the steady state, a transport equation of the following form is
obtained from (1):

(%)

I

Q (flux) = kyy Co— ko C, (11a)

Q = k21 Cl'—'kl2c2 (llb)

In general,

Q="ri,iCi—FRyi0Cipy (0=0,1,2, ..., N—1} (11¢)
and

Q= lkyin Cx (11d)

Equations {11a—d) are extensively applied by Eyring and his
co-workers to the problems connected with steady states.

III. GENERAL SOLUTION OF THE TRANSPORT EQUATION

The N + 1 eigenvectors of the matrix A form a complete set,”?
and A4 has N + 1 positive eigenvalues, which forms a canonical
matrix under similarity transformation, and is consequently non-
singular. Thus, C,(¢) and g.(f) can be expanded as a linear combi-
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nation of eigenvectors of the matrix 4:

= i an(f)w)™ (12)
N
o) = Zobn(t)w:.-.‘"‘ (13)

Using the orthogonality condition (6) the quantity, a,(f), at ¢ =0 is
determined by the initial distribution of C,(f);i. e

2,(0) = S C,(0)g.~ p,™ (14a)
k=0
0) =k§e,..(0)q,.=~* e (i4D)

'Substituting (12) and (13) into (1b), and using the orthogonality
relation (6), one obtains

nt) + Rutlt) z b 007 (15)

te=

the solution of which is given by

ml) = ([ S 6oy et al0)] 1

7m0

From (12) and (16}, one obtains the general solution of (1):

Cylt) = Ze-z tU‘ 2 b, (2 W™ et dt+ZC (0)g, 1I},f(m) P (17)

n=0 $=0

IV. EIGENVALUES AND EIGENVECTORS OF MATRIX A4

One can, therefore, solve the time-dependent random-walk
problems if the transition probabilities for every possible configura-
tion are known. As long as IV is not large, the eigenvectors are,
therefore, obtainable by using electronic computors. However, the
particular solutions with a priors transition probabilities for large N
are not, in general, obtainable.
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We shall present here some potential profiles which give analytic
expressions of y's and A’s for any N, and shall generalize these
results to include broader multi-barrier problems. Nearest-neighbor
transition probabilities only are involved throughout the following
considerations except for the perturbation theory treatment; the
inclusion of the next-nearest neighbor may be introduced by the
perturbation method as discussed later.

A. A Potential Profile with Equal Forward-Nearest-Neighbor and
Equal Backward-Nearest-Neighbor Transition Probabilities

Let all the forward transition probabilities be equal to &, i.e.,
Ripr.e=0b{(£=0,1,...,N), and let all the backward transition
probabilities be equal to a; i.e., R;_;,;=a(f=1,...,N). The
representation is given in Figure ZB. Then the eigenvalues are the
solution of the polynomialin A of | A — A | = 0.

|A—2AI|=|b—2 —a 0
—b a4+b—21 —a
—b at+b—1 —a

_— —_— — (18)
0 —a
—b a+bdb—1
< N+1 _ >
= a1 Gy (0} =0
where
=14 (b/a) — (Aa) = 1 + ¢ — (A]a) (19)
Dyii(2) =|x—1 —1 o
—C x —1
—c x —1
_ = e (20)
0 —1
—cC X




