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PREFACE

This book is intended primarily for engineering and applied science
students as an introductory and/or a secondary course in fluid me-
chanics. However, it may also serve professional engineers who need
a basic understanding of fluid mechanics for their current work, as
well as preparation for advanced work. The book is further intend-
ed for those who have not had adequate foundations in fluid mecha-
nics during their college work and who are independent and unassisted
readers.

Fluid mechanics originally evolved from the combined results of
the highly-developed classical hydrodynamics on one hand and the
purely empirical hydraulics on the other. It was the Prandtl school
that first developed the synthetic process between classical hydrodynam-
ics and practical hydraulics. During the past two decades there has
been a rapidly increasing improvement in modern technology and
design. The trend is ever increasing. These advances demand a reas-
sessment of current course content at college level, and fluid mechan-
ics is no exception. We can no longer imagine that students can still
be trained for the specific tasks they will have to perform in the
course of their careers in engineering or applied science. But their
training should have provided them with the ability to formulate their
problems based on the fundamental laws of nature, to recognize the
type of methods which are applicable, to read with understanding the
relevant work and to come up with a usable answer. The need for
a book on fluid mechanics which can realize this aim has long been
felt.

In this textbook I have attempted to present, in a logical pattern
of development, a unified comprehensive coverage of the basic founda-
tions of the subject matter. It emphasizes the concepts and basic
principles of fluid mechanics that are common to application in most
branches of the engineering profession. The presentation demonstrates
the universality of mathematical expressions portraying physical phenom-
ena. It introduces a high level of general theoretical treatment of
fundamentals, which are presented at an elementary level. A typical point
showing the concept of generality is the treatment of the governing
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equations for a viscous compressible flow; first the equations are derived,
and then the general realtions are reduced in accordance with the limita-
tions of the specific problem under investigation. In this way, the
student gets a much clearer understanding and better appreciation of
the underlying physical assumptions and limitations of the solution
obtained when he sees what terms in the governing equations are
neglected. Problems are formulated whenever possible, on the basis of
fundamental physical principles rather than the utilization of arbitrary
assumptions. Many illustrative examples are included to enhance the
reader’s thorough understanding of the subject, and develop his ability
to analyze new and challenging problems in this field.

The order of the contents of this text is believed to present a
rational classification of the topics treated. The introductory chapter
begins with a discussion of the general aspects of fluid mechanics and
the physical properties of fluids. The regimes of the mechanics of
fluids are presented and categorized here so that the reader can grasp
a general picture of fluid mechanics and its related fields before at-
tempting to study any particular branch of the subject. It is vitally
important that the reader recognizes the limitations in the application
of the theory to any specific problem. Chapter 2 deals with fluid
statics and relative motion of liquids. The fundamental differential
equation of fluid statics is obtained in general vector form. The kine-
matical foundations of fluid motion are discussed in Chapter 3. It has
been my observation that one of the fundamental sources of difficulty
for students in fluid mechanics is the method of describing fluid
motion. I have attempted to give a clear mathematical derivation and
simple mathematical and numerical examples to illustrate the relation
between the Lagrange method and the Euler method. The discussion
of topics such as conservation of mass, circulation, and velocity po-
tential are deferred to later chapters for obvious reasons.

Chapters 4 and 5 are devoted to the governing equations of fluid
dynamics which form the backbone of the remaining chapters of the
text. Chapter 4 gives the concepts and relationships of the stresses and
rates of strain which are essential in the development of the governing
equations of a viscous compressible fluid. Unless the materials presented
in Chapter 4 are well understood, the derivation of the governing
equations in Chapter 5 cannot be made meaningful. In today’s environ-
ment we encounter many structures which have cylindrical and
spherical configurations. The readers may find the comprehensive
presentation of the basic equations of fluid dynamics in cylindrical
and spherical coordinates in this chapter very helpful.

The problems of one- and multidimensional flows of an inviscid
incompressible fluid are given in Chapters 6 and 7, respectively. To
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illustrate the conciseness of the analysis in the presentation I shall use
the two-dimensional source and sink flow as an example. The dis-
cussion begins with the physical definition of a source; the stream
function and the velocity potential for source flow are obtained and
discussed only after the flow satisfying the continuity equation and
the condition of irrotationality are shown. I believe that only through
this type of presentation can the student obtain a clear understanding
of the basic physical problem which will affegt his comprehension of
future problems.

In Chapters 8, 9, and 10, a systematic development of the flow of
a viscous incompressible fluid is presented. Chapter 8 begins with
the discussion of the significance of the Reynolds number which was
obtained from the Navier-Stokes equation (derived in Chapter 5) by
means of the law of similarity. Topics such as measurement of vis-
cosity and hydrodynamics of bearing lubrication are introduced only
after the explanations of the significance of the Reynolds number, vis-
cosity and parallel flow theory are made. The laminar boundary layer
theory is presented in Chapter 9 which begins with the discussion of
the properties of the Navier-Stokes equations and the boundary layer
concept. Chapter 10 presents an introduction to turbulent flow in which
the Reynolds stress has been clearly explained with an example of the
rate of momentum transport of fluid masses. The analogy between the
mean free path in kinetic theory of gases (given in Chapter 8) and
the mixing length in turbulence is clearly shown.

The last two chapters are devoted to the flow of compressible fluids.
Chapter 11 deals with an inviscid compressible flow. The discussion
begins with the four controlling parameters in compressible flow which
are obtained from the energy equation (derived in Chapter 5) by means
of the law of similarity. Chapter 12 is concerned with the flow of a
viscous fluid. The governing equations of viscous compressible fluids
(derived in Chapter 5) have been clearly applied here. The topic on
steady flow through a constant-area pipe with friction is included in
this chapter. The presentation of this topic in this chapter is believed
to be both logical and orderly.

It is my conviction that topics such as dimensions and unit systems
and dimensional analysis should be presented in a unified fashion. If
this chapter were placed at the beginning of the text it could easily
overwhelm most students by the strange parameters or numbers which
actually belong to the latter part of the text. This is the very reason
that the chapter on dimensional method in fluid mechanics is presented
in an appendix so that it can be referred to whenever required. Both
British and metric units are discussed in detail here and the signi-
ficant “numbers” of different regimes in the fluid mechanics are
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obtained by dimensional analysis and are in complete agreement with
results obtained from the similarity principle. A review of thermody-
namic relations is also presented in an appendix to supplement the
discussion of compressible flow theory given in Chapters 5, 11, and 12.

As the first course in solid mechanics is now being taught with
vector methods and notations in many schools, these methods and nota-
tions therefore have been used consistently throughout the text. It is
my belief that the vector analysis presentation gives a simple, clear,
and suggestive exposition of the physical idea involved. A summary
of vector analysis is given in Appendix A which may be helpful for
those who have been little exposed to the subject as well as for those
who wish to refer to vector identities and to the transformation formu-
lae for orthogonal curvilinear coordinates. After a student has gained
some basic knowledge of strength of material he should be able to
follow the discussion in Chapter 4 without difficulty.

The material contained in this text can be covered in about six
semester hours at junior-senior level or three semester hours in the
first graduate course. A three-semester-hour terminal course could
normally include most of the first four chapters plus portions of
Chapters 5 through 7, with selected topics in Chapters 8 through 11.
For those who are interested only in inviscid flow, Appendix D is
specially prepared to replace Chapters 4 and 5. The instructor should
select those topics in accordance with requirements of his class.

In preparing the manuscript, I have relied heavily on the works of
authors who have written before me, particularly those authors whose
writings are considered classics in this field. A list of selected refer-
ences is given at the end of the text and I am indebted to many of
these studies.

A number of my colleagues and friends have been patient enough
to read portions of the manuscript and to offer valuable comments. In
particular, I wish to take this opportunity to express my sincerest
appreciation to Dr. J. O. Hinze of the Technological University, Delft,
Dr. A. Miele of Rice University, Dr. M. Morduchow of the Polytechnic
Institute of Brooklyn, Dr. P. H. Miller of the University of Missouri,
Dr. R. W. Courter of the University of Wyoming, and Drs. L. R. Mack,
D. G. Hull, J. W. Porter, and F. D. Masch of The University of Texas. I
wish to heartily thank Drs. N. W. Newmark and W. J. Hall of the Univer-
sity of Illinois for their valuable comments and suggestions during the
preparation of the manuscript. Mr. A. M. Bloom assisted the author with
great devotion during the final preparation of the manuscript; his
assistance in revising the manuscript and in proofreading was an
essential help for the completion of the book. Finally, I greatly
appreciate the efforts of Mrs. Georgia Courter, Mrs. Marie Kaak, and
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Mrs, Harriet Hunt, who typed the manuscript, of Mr. R. E. White,
Mr. W. D. Conine, III, and Mrs. Judy Pope who read proofs and of
Mr. A. W. Stratton, whose work led to the preparation of a large
portion of the art.

Austin, Texas S. W. Yuan
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1

INTRODUCTION

L1. General Description.of Fluid Mechanics

Fluid mechanics, one of the oldest branches of physics and the
foundation for the understanding of many other aspects of the applied
sciences and engineering, concerns itself with the investigation of the
motion and equilibrium of fluids. It is a subject of widespread interest in
almost all fields of engineering as well as in astrophysics, biology, biomedi-
cine, meteorology, physical chemistry, plasma physics, and geophysics.
Since the nineteenth century when the study of hydraulics as a science
was associated with the growth of the fields of civil engineering and
naval architecture, the scope of fluid mechanics has steadily broadened.
The development of aeronautical, chemical, and mechanical engineering
during the past few decades on the one hand and the exploration of
space in the past few years on the other, have given added stimuli to
the study of fluid mechanics so that it now ranks as one of the most
important basic subjects in engineering science.

The frontier of fluid dynamic research has been extended into the
exotic regimes of hypervelocity flight and flow of electrically conducting
fluids. This has introduced new fields of interest such as hypersonic
flow and magnetofluidynamics. In this connection it has become neces-
sary to combine a knowledge of thermodynamics, mass transfer, heat
transfer, electromagnetic theory, and fluid mechanics to fully understand
the physical phenomena involved.



