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Preface

This text contains sufficient material for a three-term, three-hour-per-week course.
It is, however, primarily intended for a two-term undergraduate course in which the
individual instructor may choose from among a variety of optional topics for detailed
treatment. If the student has had prior training in advanced calculus (or if the text
is used for graduate studies), it may be possible to treat the first four chapters as
review material, with emphasis placed on the physical interpretation of mathematical
relations. Such a review will also serve the purpose of familiarizing the reader with
the notation introduced in these chapters and used throughout the text,

Depending on the requirement of the undergraduate curriculum, many sections
‘and some of the proofs may be omitted to provide shorter courses. These sections
and proofs are marked, and their omission does not break the continuity of the text.
In most cases we have first stated what is to be proved before proceeding to prove it.
This makes it possible to use the text with varying degrees of mathematical involve-
ment. The authors have found that the availability of detailed derivation in the
text makes it possible to use the classroom hours for a discussion of the physical
significance of the results and for problem solving, rather than for a reproduction of
the derivations.

The problems given at the end of the text are designed to complement and extend
the text material. For this reason they are numbered by chapter, section, and
problem. For example, Prob. 1-4.3 deals with material discussed in Sec. 1-4 and
is the third such problem. This numbering will assist the reader in locating the
pertinent discussion. Throughout the text the rationalized mks-coulomb system of
units is used and, for beevity, units of various quantitics are not always explicitly
stated.

The principal motivation for writing this text is best understood in terms of our
objections to some of the currently available treatments of the subject. Although
many undergraduate texts in electromagnetics have been published during the past
decade, most of these are written with the idea that field theory is really graduate
material and that there is no need to deal with it in depth at the undergradvate level.

. The courses based on such texts include only that mathematical preparation which is
essentia] to solve the problems at hand; they do not provide the student with reason-
able preparation for graduate studies. -1, acgprdame with this philosophy, the laws
of clectromagnetlc theory are introduced, vfplecéinéacl; that the student does not
learn a law in any greater genef ity-than is neé[ ary to solve the next set of

problems.

vii



viii Preface

Because of the lack of depth in such courses, most graduate schools have to start
their field analysis and electromagnetic theory from “scratch,” ignoring the under-
graduate training of students. In fact, it is not an unusual experience to find such
a training a hindrance rather than a help to graduate studies, inasmuch as some of
the oversimplified concepts learned in undergraduate studies must be unlearned
before more exact concepts can replace them. Furthermore, the low level of analysis
currently prevalent in undergraduate courses in electromagnetic theory is inconsistent
with the fact that in many schools advanced calculus is now taught to engineering
students.

Notwithstanding this background in advanced calculus, it has been our experience
that the formal approach of mathematics courses does not adequately prepare the
student for the application of this material to physical problems. For this reason
we have found it necessary to devote the first five chapters of the text to field analysis,
in which we introduce the concepts of divergence, curl, and laplacian, not as mere
differential operators, but as volume densities of the sources of a field. Similarly,
a uniqueness theorem is treated not only as a mathematical structure but also as an
expression of what constitutes physical determinism. We have found this approach
most effective with students whether or not they have taken a course in advanced
calculus.

In addition to the preparation for the study of electromagnetics, the first five
chapters provide a self-contained and sound basis for the mathematical analysis of
all kinds of fields and should prove valuable to physicists and mechanical, chemical,
and civil engineers as well as electrical engineers.

With the introduction of the general concepts of fields and their sources, it is
possible to state the laws of electromagnetic theory in an integrated manner. This
is done in Chapter 6 where, in addition to Maxwell’s equations, the concepts of energy
conservation (Poynting’s theorem) and electromagnetic momentum, as well as
electromagnetic waves and potentials, are introduced. This chapter is a complete
statement of the classical laws of electromagnetic theory, and the rest of the text is
concerned with developing the ramifications of the theory and with its application to
practical problems. Chapter 7 is devoted to introducing the technique of multipole
expansion and the use of electric and magnetic multipole approximations. Chapter
8 deals, in detail, with the consequences of idealizations made in practice, where
distributed charges and currents are assumed to be singular in the form of surface
or line densities or point sources. This and the assumption of abrupt boundaries
between two media lead to (nonphysical) discontinuities in the electric and magnetic
fields at the idealized boundaries. The chapter shows how these idealizations are
used to solve practical problems. The use of the Green’s function and the concepts
of coefficients of inductance and capacitance are also introduced in this chapter.
Chapter 9 contains a detailed discussion of the method of separation of variables as
applied to the solution of boundary-value problems. Also included in this chapter
are numerical and graphical methods for solving problems whose boundaries do not
permit direct analysis. Some microscopic properties of matter are considered in
Chapter 10. In Chapter 11, radiating ficlds are introduced by means of a discussion
of the elementary dipole antenna. Radiating fields are then contrasted with quasi-
static fields—Ileading to a discussion of the field basis of circuit theory. Chapter 12
contains a comprehensive analysis of plane waves and applies this analysis to the
study of transmission lines and waveguides. The general relationships between the
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transverse and longitudinal components of a plane wave derived in this chapter
provide the basis for the study of guides of arbitrary cross section, although only
rectangular guides are treated in detail.

Chapter 13 is an introduction to propagation in lossy media: it ends with a
discussion of dispersion due to lossiness of the medium as well as geometric and
parametric dispersion. Chapter 14 deals with the reflection of plane waves and the
exchange of momentum between an electromagnetic field and a material medium.
Chapter 15 uses the formulas derived in Chapter 11 as a basis for analyzing radiation
from linear and loop antennas. This final chapter concludes with a discussion of
antenna arrays and receiving antennas.

The material of this text has been taught by the authors and some of their colleagues
from notes for the last three years at The City College of New York.

The authors wish to thank Professor John Truxal, Vice President in charge of
Education at the Polytechnic Institute of Brooklyn, for his encouragement and help
throughout the preparation of the manuscript. Thanks are also due to our Depart-
ment Chairman, Professor Herbert Taub, for his cooperation. The authors have
benefited from long discussions with many of our colleagues—most particularly,
with Professor Egon Brenner of The City College and Professor Leonard Bergstein
of the Polytechnic Institute of Brooklyn. Words cannot express the depth of our
gratitude to Miss Sadie Silverstein, without whose cooperation in preparing the
manuscript this text could not have been published. We are also grateful to our
former student, Miss Rosalind Soodak, for drawing most of the original figures.
Finally, we wish to thank our students who have suffered through early drafts and
have provided us with innumerable corrections.

Mansour Javid
Philip Marshall Brown
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11‘
Vector Algebra

In the process of learning and through a comparison of objects, the positive real
integers become familiar concepts. Other types of numbers are subsequently intro-
duced as abstractions to facilitate the analysis of observed phenomena. Fractional,
pegative, and irrational numbers are familiar examples. In the study of physical
phenomena one encounters a variety of quantities. A quantity whose only measur-
able attribute is its magnitude is called a scalar quantity. The price of a given
commodity and the temperature at a given location are examples of scalar quantities.
A quantity with the two measurable attributes magnitude and direction is referred
to as a vector quantity. The velocity of a moving object and the force applied to a
body are examples of vector quantities. Thus a vector quantity can have the
dimension of force or velocity or other dimensions.

In specifying a vector quantity it is customary to indicate it by a directed line
(arrow) in the direction of the vector quantity. The length of the line is often made
proportional to the magnitude of the quantity. Such a line is referred to as a vector.
In this text we designate a vector by a boldface letter,} suchasuor A. A dimension-
less vector whose magnitude is unity is called a unit vector.

Two vectors having the same magnitude and direction are called equal vectors.
Two equal vectors may be associated with the same point or different points in
space.

1-1. Vector and Scalar Algebra. The above description of a vector is based on
the concept of quantities with magnitude and direction. Mathematics deals with
numbers which are abstractions, not with quantitiés. The numbers 2 and 5 are
abstractions based on consideration of, for example, two hands and five fingers.
Similarly, vector numbers are abstractions based on quantities with two measurable
attributes, magnitude and direction.

In making abstractions the intuitive ground of comparison between objects, which
introduced us to integers, is lost. Instead, numbers are defined through their rules
of operation. For example, the rules of addition and multiplication in common
algebra define-the algebraic numbers.

A sufficient set of rules for common algebra is:

1. a + b = b + a, commutation in addition.

2. a4+ (b + ¢) = (a + b) + ¢, association in addition.

3. There is an x such that @ + x = b, unique definition of subtraction.

4. a- b = b - a, commutation in multiplication.

5. a-(b-c)=(a-b)- c, association in multiplication.

t This chapter may be omitted by the reader acquainted with vector algebra.

1 The magnitude of the vector A will be designated by the italic letter 4.
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6. If a £ 0, there is an x such that g - x = &, unique definition of division.

7. ¥ a-b =0, then a = 0 and/or b == 0,

8. a-(b+c)=a" b+ a-c, distributive property of addition and multiplication.

These rules are postulated to define the common algebra of scalars. However,
they are chosen to make the algebra of scalars useful in describing phenomena. In
order to provide an algebra that is useful in describing a broader field of phenomena,
it will be found necessary to weaken the restrictions placed on the operations defining
common algebra. This process is called “weakening the postulates.” In the formu-
lation of a useful algebra of vectors, postulates 4, 5, 6, and 7 mentioned above
must be abridged or completely eliminated.

1-2. Addition of Vectors. Two vectors A and B which are not in the same or
opposite directions determine a plane. The sum of two vectors A and B is a third

C=A+B

\ /’,,’ . C
\ 8 P
8

C=A+8B _
(@) () ()
Fi1G. 1-1 Vector addition. (a) Two vectors; (b) parallelogram rule; (c) head-to-tail rule.

vector C in the plane of A and B and is obtained by the ‘‘parallelogram” rule. This
rule states that to obtain the vector C = A + B two vectors must be drawn from a
point, one equal to A and the other equal to B, as in Fig. 1-15. Then a parallelo-
gram with these two vectors as its sides should be drawn. The diagonal of this
parallelogram, directed as shown in Fig. 1-15, is the vector sum of A and B. This
process is, of course, equivalent to the “head-to-tail” process of addition of vectors
shown in Fig. 1-1c. The above definition of addition is based on the observation of
effects caused by vector quantities such as forces and velocities.

The parallelogram rule is an operational definition of vector addmon and implies
the foIlowmg rules:

A+B=B+A commutation in addition

A+B+C=A+B +C association in addition

Furthermore, it implies that for two given vectors A and B there is always a third
vector X such that A 4 X = B. This vector is called the vector difference between
B and A. Thus all the addition rules of common algebra are carried over into
vector algebra.

1-3. The Product of a Vector and a Scalar; Umt Vectors. The product of a scalar
m with a vector u is p = mu, a vector in the direction of u with magnitude mu. Any
vector B may be expressed as the product of its magnitude B and a unit vector
ap = B/B; thus B=agB.

i-4. Vector Representation of Plane and Elemental Surfaces. With any plane sur-
face we associate a vector S of magnitude equal to the area of the surface and in a
direction normal to the surface. We refer to the direction of the normal as the
direction of the vector area S. If the plane surface forms part of a closed surface
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(one which completely encloses a volume), we define the outward normal as its
positive direction. Otherwise, the positive sense of S (the positive direction of the
vector’s arrowhead) is arbitrarily chosen.

Any infinitesimal portion da of a curved surface may be considered planar. An
infinitesimal vector da is associated with this infinitesimal plane so that da = nda,
where n is the unit vector normal to the infinitesimal (and therefore planar) surface
at the point under consideration.

1-5. The Scalar Product of Two Vectors. The scalar product of two vectors A
and B, designated by the symbol A . B, is defined as

A-B2 4Bcosb,, (1-1)

C

Fic. 1-2 Tilustration of B,*A =
B, A when B, # B,.

where 0,45 is the angle between the vectors A and B.¥ The definition given in Eq.
(1-1) imptlies the following laws:

AB=B-A commutative law for scalar product
A-B+C=A-B+A.-C distributive law for scalar product

Note that the specification of A and A - B does not uniquely define B. For example,
assume that in Fig. 1-2 the vector A is of unit magnitude and that it is required to
determine B so that A-B = 1. It is apparent that the vectors B,, B,, and B, are
only three of an infinite number of vectors satisfying this requirement. 1f we consider
the operation defined by Eq. (1-1) as multiplication, then the indeterminacy of B in
the above example indicates that “division” by a vector is not defined. Tt is also
noted that A - B = 0 does not necessarily imply A = 0 or B = 0 but might rather
imply that A and B are at right angles. The scalar product A B is commonly
referred to as the dot product.

1-6. The Vector Product of Two Vectors. The vector product of the two vectors
A and B is designated as A x B. [t is defined to be the vector C of magnitude
ABsin 6,5 and in a direction normal to both A and B (see Fig. 1-3). The sense of
C is determined by the “right-hand rule.” This rule states that if a right-handed
screw is turned from A toward B (in the direction of the smaller angle between A
and B), then the sense of the arrow representing C == A x B is in the direction of

advance of the screw. The above definition of the vector product implies the
following:

t The symbol £ s read “is by definition equal t0.”
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The anticommutative law holds for vector products:
AxB=-BxA
Thus AxA=0
The distributive law holds for vector products:
Ax(B+C)=AxB+AxC

The associative law does not hold for vector products:

Ax(BxC)#(AxB)xC

This is apparent when we observe that the left-hand member must be normal to A,
while the right-hand member is normal to C. From the definition of A x B it is
also seen that A x B == 0 implies A =0 orB =0 orsin 0,5 = 0. Also, as with the
dot product, the specification of A and A x B does not uniquely determine B. The
vector product A x B is commonly referred to as the cross product.

c
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Fi1G. 1-4 The sense of vector C corresponds ~ FiG. 1-5 Triple scalar product inter-
to the sense of the periphery oagb. preted as a volume.

In the expression C = A x B the vectors A and B form the adjacent sides of a
parallelogram in the plane of A and B, as shown in Fig. 1-4. The area of this
paralielogram is AB sinf) ;5. Thus C is the vector area of this parallelogram. This
is one (rather restricted) way of defining the sense of a vector area which does not
form part of a closed surface. A more general way is to relate the sense of the
vector area to the description of its periphery by the right-hand rule. Thus the
sense of the vector C corresponds to a description of the periphery as being directed
from o to a to g to b and back to o (see Fig. 1-4). :

1-7. Triple Scalar Product. The product C - (A x B) is a scalar. Its value is the
volume of the parallelepiped formed by the vectors A, B, and C (see Fig. 1-5). The
proof of this statement is seen by considering A x B = D. From Fig. 1-5

C-(AxB)=C-D= DCcos agp

From this figure it is seen that D is the area of the base of the parallelepiped and
C cos «(, is the height of the volume. The triple product C+(A x B) is usually
written as C - A x B. Because of the nature of the operations no ambiguity will
appear if the parentheses are removed. For example, C- A x B cannot mean
(C- A) x Bsince C- A is ascalar and the vector product is defined only fof two vectors.

We note that the volume of the parallelepiped defined by three (noncoplanar)
vectors A, B, and C can be equally expressed as C- A x B or A-B x C or any of
four other possible combinations of the vectors A, B, and C and the dot and cross



