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Preface

This volume contains refereed research articles on wavelets and multiwavelets.
It draws upon research presented in the special session on Wavelets, Multiwavelets,
and Their Applications held at the annual American Mathematical Society meeting
which took place in San Diego, California in January 1997.

This book is divided into two parts: (1) Wavelet theory and applications; (2)
Multiwavelet theory and applications. The first part consists of a collection of new
results on the classical theory of wavelets in which the wavelet spaces are generated
by dilations and translations of a single function. The second part is devoted to the
theory of multiwavelets in which the wavelet spaces are generated by the dilations
and translations of several intertwining functions. This added complexity gives
us more flexibility for the construction of wavelet bases with some desired shape
and/or properties.

We would like to thank the referees for their professional work. We are also
grateful to Ms. Christine M. Thivierge and Dr. Sergei I. Gelfand for their help at
every phase of this venture. Finally, we thank Professor Dennis DeTurck and the
American Mathematical Society Editorial Board for their efficient supervision to
produce this volume.
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Extensions of No-Go Theorems to Many Signal Systems

Radu Balan

ABSTRACT. In this paper we extend the Balian-Low type theorems to Riesz
bases for systems of many signals. We present the construction of coherent
frames and we give sufficient conditions for these frames to have coherent duals.
Under these conditions we prove some nonlocalization theorems.

1. Introduction
For two real numbers a, b we introduce on L?(R) two unitary operators:

(1.1) tapf(z) = e?™e% f(x — b)

(12) w(a,b)f(z) = e~ f(z — b)

for any f € L?*(R). We notice that w(a,b) = e ""*t,; and the adjoints are
1o = e 2™t 4, w(a,b)* = w(—a,~b). Ignoring the toral component, the
operator w(a,bd) is the Schrédinger representation of the Weyl-Heisenberg group.
In the standard Weyl-Heisenberg frame theory (see [Daub90] or [HeWa89)]) one
starts with a function g € L2(R) (the window) and two positive numbers o, 3 > 0
and constructs the set

(13) gg;a,ﬂ = {tma,nﬁg ’ (m’n) € z? }

obtained by translating and modulating g with parameters from the discrete lattice
{(ma,nB) ; (m,n) € Z*} C R2. On the other hand one can proceed in the same
way but using w(a, b) instead of ¢, 4. In this case the following set is constructed:

(1.4) Wyia,s = {w(ma,nf)g ; (m,n) € Z%}

similar to Gy, except for an extra phase factor in each function. To distinguish
between these two sets, we shall call G,., 5 a Gabor set whereas Wy.o,p Wwill be
called a Weyl-Heisenberg set.

1991 Mathematics Subject Classification. Primary 42A99, 43A99; Secondary 94Al1.

Key words and phrases. Gabor Weyl-Heisenberg frames, Balian-Low theorem, time-
frequency localization.
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4 RADU BALAN

We now recall some definitions and constructions from the frame theory. Con-
sider a (complex) Hilbert space K, a countable index set I and a set F = {f;,i €
I} C K of elements of K. Then:

DEFINITION 1.1. The set F is called a frame for K if there are two positive
constants 0 < A < B < oo such that for any z € K:

(1.5) Alel* <Y | <= fi > < Blla|?
i€l

The positive numbers A and B are called (frame) bounds. If they can be chosen
equal (i.e. A = B) then the frame is called tight.

DEFINITION 1.2. The set F is called a Riesz basis of K if it is frame for K and
it is also a Schauder basis.

For a frame F we introduce the following bounded operator, called the analysis
operator:

(1.6) T:K— U1, T()={<=z fi >}k

where 12(I) is the space of square summable complex sequences indexed by I. The
adjoint of T, called the synthesis operator, is given by:

(1.7) T P(0) - K, T"(c)=Y_cfi
i€l
Let us denote by S = T*T the positive operator called the frame operator:
(1.8) S:K—»K,S(x)=z<x,fi>f,~
i€l

We see that (1.5) is equivalent to the following operatorial inequalities:

(1.9) A-1<S<B-1
Using S we introduce two special frames: the standard dual frame, defined by:
(1.10) fi=8"1f,iel
and the associated tight frame, defined by:
(1.11) =815 iel
The standard dual frame F = { ﬁ,i € I} has the following reconstruction property:
(1.12) x=2<x,f,~>f,~=z<z,ﬁ>_fi,‘v’x€K
i€l i€l

whereas the associated tight frame F# = { f#,i € I} is a tight frame with frame
bound 1 (see [HeWa89)).

Now, returning to Gabor and Weyl-Heisenberg sets, we notice that Gg.a,p is
frame if and only if Wy,q g is frame.

The classical Balian-Low theorem states that if Gg.a s is an orthonormal basis
for L2(R) then g is nonlocalized, i.e. =+ zg(z) and z g'(z) cannot both be
in L2(R) (see references in [Bali81] , [Low85]). This result was later extended to
the case when Gy, is a Riesz basis for L*(R) (see [Daub90] or [BHW95]).

Although it appears that the extra phase factor in (1.4) is harmless, we shall
see that this is not true for many signals systems. In the case when (1.3) or (1.4)
is a frame we shall call it a Gabor frame , respectively a Weyl-Heisenberg frame. In
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this paper we shall use the term coherent as meaning of Gabor or Weyl-Heisenberg
type.

Let us denote by L?(R, C") = L?(R)®...® L?(R) the direct sum of k copies of
L%(R). Our goal is to extend the Balian-Low theorem to frames in L?(R,C"). We
point out that our approach is different to the one followed by Zeevi and Zibulski
(see [ZiZe95)).

The organization of the paper is the following: in section 2 we describe co-
herent frames for L?(R,C") with coherent duals; in section 3 we give the no-go
theorems for Riesz bases; section 4 contains the conclusions and is followed by the
bibliography.

2. Construction of coherent frames with coherent duals

Let us consider the Hilbert space L?(R,C") = L}(R) @ ... ® L?(R) endowed
with the scalar product given by:

k
(2.1) <H® O fih1® - Db >=)_ < fi,h; >
j=1
where < fj,h; >= [ fi(z)hj(z)dz. We shall denote by =; : L*(R,C") — L*(R)
the canonical projection onto the jth component 1 < j < k: m;(f1®--- & fx) = f;.

For two vector parameters a = (a1,...,ax) € R*, b = (b1,... ,bx) € R* we
introduce the following unitary operators:
(2.2) tap : L*(R,C") — LR, C") , tap = ®5_1ta, ,m;

(2.3) w(a,b) : L(R,C") — L*(R,C") , w(a,b) = @%_,w(a;,b;)m;
or, explicitly:
tap(fi® D fi) =ta, o, 1D Dta b fk
w(a,b)(f1 & & fr) = w(ar,b1) fr ® - - ® wlax, bi) fi
Using the adjoints of each t4, 5, and w(a;,b;) we get:

*  _ mnk —2mia;b; .
(2'4) ab = Dj=1€ 7 Jt—aj7—bj7r]

(2.5) w(a,b)* = w(—a, —b)

Consider now a vector g = g' @ --- ® g* € L?(R,C") and two positive vector
parameters a = (ai,... ,0r) € Rﬁ and B8 = (B1,.-.,0k) € R’i. We construct
two coherent sets using the previous unitary operators and the discrete lattice
{(mea,nB) ; (m,n) € Z*} C R?**:

(2.6) Gpa = mang8; (mn) € 2%}

2.7) Weap = {w(ma,nB)g ; (m,n) € 2%}

Suppose either G g B OF Wea, B is a frame in L?2(R,C"). We point out that,
in general, one set is a frame does not imply that the other set is also a frame.
Moreover, even if one set is a frame, the standard dual frame may not be a coherent
frame (i.e. a frame of the same type). We shall derive conditions under which the
standard dual frame is coherent. Before doing so we present an example of such
multidimensional frame:
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EXAMPLE 2.1. Consider n = 2, a3 = as = %, Bi = B2 = 1 and choose g! =
Lio, 1) ¢’ = 11,2}, the characteristic functions of, respectively, [0,1] and [1,2]. We
want to show that G1g,42,(1,1),(1,1) 18 a frame for L?(R)®L*(R). A similar analysis
works for Waigg2,(1, 1) (1,1)-

Consider two arbitrary functions fi, fo € S in the space S of rapidly decaying
functions. Then:

n+1
Crn =< f1,Gpp >= / e "™ f1(z)dx

n

n+2
2 2 —1
Con =< fz’gm'n >= / € zvrma:f2(x)dx
n+1l

Using the Poisson summation formula (see [Daub90]), 3 e™™* = 2% §(z —
2m) we compute:

28 Yo=Y X [ i [

Similarly, we get:

n+1 n+1 .
Slehal? =X [ dar [ deafi@) Rl = 20
m,n n V7 n
3 [Enl? = 201 2l

m,n

n+

2
da:zfl(xl)fz(zz)ei‘lrm(:cz—zl) -0
+1

Hence we have:

> lekn + chunl® = 201A1° + 1£21%)

and it follows that the frame operator on S @ S is equal to S = 2 - 1. Since
S® S is dense in L2(R) ® L2(R), S = 2- 1 on the whole L?(R) & L*(R). Thus
Ggr@e7,(4,1),(1,1) 1S 2 tight frame in L?(R) @ L?(R). Moreover, as Theorem 2.6 will
show, Ggigg2,(1,1),(1,1) 18 also a Riesz basis for L*(R) @ L*(R). ©
Now, returning to the coherent frames (2.6) and (2.7), the frame operators are
given by:
sY . [*R,C") — L*®R,C") , W : [*(R,C") — L*R,C")

Sg(f) = Z < f’tma,n,@g > tma,nﬁg

W(f) =3 < f,w(me,nB)g > w(ma,nB)g
Thus the standard dual of g";; B is given by:
Goop =159 e 85 (mn) €27}
and of Wg;a,ﬂ by:
Woap = ((8") u(ma,nB)g ; (m,n) € 2%}

In order to state and prove our results, the following preliminary observations will
be useful. Let us consider the sets G’ := Ggiia;.8, = {tma;n8;9"; (m,n) € Z?} and
W= Wi, 8, = {w(may,nB;)g’; (m,n) € Z?} for 1 < j < k. They are the
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project.ions of gg;a’ 8 and_W ey respectively, onto the components of L2(R, C")
(ie. ¢ =mj(Ggaph W = mi(Wg,,3))- Then the following result holds.

LEMMA 2.2. Ifgg;aﬂ is frame for L>(R, C™) then each G is frame in L2(R),
1<j <k IfWyqpg is frame for L?(R,C™) then each W’ is frame in L*(R).
However the converse is not true.

REMARK 2.3. Before proving this lemma we give an example where the con-
verse is not true. Suppose n = 2 and take a; = a3, #; = f; and g' = g? such that
Gglia, .0, be a frame in L*(R). Then G' = G® and W' = W? are all frames, but:

gg;a,ﬂ = {gmn D gmn 3 gmn = tmal,nﬁlgly m,n € Z}

Thus the span of G, B contains only vectors of the form f @ f, with f € L2(R).
Obviously (—f) @ f, for f # 0 is not in this span and therefore gw 8 is not a
frame in L?(R, C?). Similarly for We.a 8

ProoF. The frame condition for G ) reads as:

k k k
A MGIE <Y1 < fivtmayms g > P < BYIIf1°
Jj=1 j=1

m,n j=1

for any f; € L*(R). For f; = 6;;,f we get:

ANFIP <371 < frtmayymssed® > 2 < BlIfI?
m,n

for any f € L*(R) which means G’ is a frame for L*(R). A similar proof shows
that each W’ is frame in L?(R) when W, ,, g is frame in L?*(R,C"). O

We introduce now the notion of frame orthogonality:

DEFINITION 2.4. Let F; = {g} ; i € I} and F» = {g? ; i € I} be two frames
in some Hilbert space K. We say that F, is orthogonal to F» if for all f,h € K we
have:

(2.9) Yo <fgl><gh>=0
i€l
ExAMPLE 2.5. Consider the same example as before (Example 2.1). The equa-
tion (2.8) shows that condition (2.9) is fulfilled for any f, f2 € S. Since S is dense
in L?(R) we get that (2.8) holds for any fi, f2 € L*(R). ©

If we denote by Ty : K — [?(I) and T, : K — [%(I) the analysis operators
associated to F, and F, respectively, defined by T1(f) = {< f,9{ > }icp, T2(f) =
{< f,4? > },c1» the condition (2.9) can be rewritten as Ty T> = 0.

Consider now the following three sets of conditions:

I. G7 is orthogonal to G*, for all j # [, 1 < j, I <k

II. W7 is orthogonal to W', forall j #1, 1 < j,l <k
HL @18 = = axBr =: 7 (7 stands as a notation for the common value)
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THEOREM 2.6. With the notations introduced before:
@) IfG Bgisa frame for L2(R, C") and I or III holds true, then its standard

dual is also a Gabor frame generated by a vector gg € L*(R,C") (i.e. g:,;/ﬂ =

ggg;a,ﬁ)’.
b) If Wg;a, B is a frame for L2(R, C™) and II or III holds true, then its standard
dual is a also a Weyl-Heisenberg frame generated by a vector gw € L}(R,C") (i.e

Wg;a,ﬂ - wa;aﬂ);

¢} If III holds true then gg;aﬂ is a frame if and only if Wg;a,ﬁ is a frame
and in this case gg = gW ;

d) If any of the above cases occurs then Z;?:l o <1;

e) Suppose gg;m B s a frame and I or III holds true. Then G g, is a Riesz
basis for L2(R,C™) if and only if 25:1 ajfi=1;

f) Suppose Wg;a B is a frame and II or III holds true. Then Wg-a B is a
Riesz basis for L2(R,C™) if and only if Z?=1 affi=1.

PROOF. a),b) In order to prove a), respectively b) it is enough to check that
the corresponding frame operator commutes with tma,nﬁ’ respectively w(ma, n3).

Consider the Gabor set.
If I is true then the frame operator decomposes into a diagonal sum of operators:

§9 = &f_,8'n;
where SJ = Em,n < ',tmaj,n,@jgj > tmaj,nﬂjgja 1 S .? S k.
Now, since [S7,tma;,ng,] = 0 (see for instance [DLL9S5] relation (2.5)) we get
that [Sg,tma n,B] =0 for any m,n € Z, i.e. they commute (by [-,-] we denote the

commutator [4, B] = AB — BA).
If IIT is true we have:

Sgtmoa,noﬂf = Z < tmua,noﬁf’ tma,nﬁ g> tma,nﬂ g
m,n

—2mi
= Z < f’ € WImonO‘yt—moa,—noﬂtma,n,B g > tma,nﬁ g
m,n

On the other hand: t_, . o _, BtmanB = 62”im”°“’t(m_m0)a)(n_no)ﬁ and thus:
_ . p2mi(m—mo)
Sgtmoa,noﬂ - Z <-e m ° no’yt(m—mo)a,(n—no)ﬁg > tma,nﬂ g

—2mi
= < lmanB8 > mo), (nno)/B 8

m,n

- g
= Z < .’tma,nﬂ g > tmoa,noﬂtma,nﬁg - tmoa,noﬂs

For S™V the calculus goes in the same way but now: w(—moc, —noB)w(ma,nB) =
eim(mno—mon)Yyy((m — mo)ay, (n — n0)B)- o

Therefore gg;aﬂ = g(sg)—lg;a,ﬂ and Wg;a,ﬂ = W(SW)—lg;a,ﬂ‘

¢) If III holds true we can check that 89 = W and thus gg = gW.
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d),e),f) Since the frame operator commutes with Lo 3,respectively w(ma,nB)
we get that the associated tight frame (defined by g, ,, = S~1/%g,,,, With gmn, re-
spectively S given by either tran 38 respectively 59 or w(me, nB3)g, respectively

SW) is also coherent; moreover this tight frame gﬁg;a‘ 8= {tma,nﬂ g'; (m,n) €

Z?%}, or Wﬂg.a 8= {w(ma,nB) gt ; (m,n) € Z?}, has frame bound 1. Then:

k
(2.10) f=3 3 <fit 0.8 >t,0.38  feLl*R,C")
m,n j=1
which implies 37, . < fitma;n8,90 > tmauns gl = 1f, Vf € L*(R). Thus
gg = wj(g“g; a ﬁ) is a tight frame with bound 1 in L?(R) and from a necessary
criterion (relation (2.2.9) in [Daub90]) we get ||g§||2 = o35
On the one hand, from (2.10) for f = g* we get:

k
2 4
Ig*)* =D "1 < g tmayns, g5 > 17 2 lg*]

m,n j=1

2 k 2 k
Thus ||g*||” = 21 “9?” =2 =106 <L
On the other hand, it is known that the frame is a Riesz basis if and only if the
associated tight frame is an orthonormal basis. Thus ||g!||> = 1 and the conclusion

follows. O

From this theorem one can see that the Gabor and Weyl-Heisenberg cases are
very similar. However in the next section, where nonlocalization theorems are
stated and proved, a difference emerges. We can handle the Weyl-Heisenberg case
under the conditions II or III, but for the Gabor set we can treat only the case Iil.

3. The Balian-Low type theorems for Riesz bases

As we have proved in Theorem 2.6, if condition III holds true any result about
Weyl-Heisenberg frames moves automatically into Gabor frames with the same
lattice. We shall concentrate in this section on Weyl-Heisenberg Riesz bases. But
before stating the results, we have to introduce some function spaces. Consider the
following unbounded operators:

(3.1)
¢: L2(R) — L*(R) , D(q) = {f € L*(R)| / 12 ()|2dz < 00} , ¢(f)(@) = zf(z)
(3.2)

p: L(R) — AR) , Do) = {f € @) [ 19 P < oo at1)(@) =i

where the derivative is considered in the distributional sense, and construct now
similar operators on L?(R,C"):

(33) Q: LQ(R» Cn) - LQ(Ra Cn) ’ D(Q) = 6);‘;le(q) , Q= 69;‘czlqﬂj

(3.4) P: L*R,C") — L*(R,C"), D(P)=a"_,D(p) , P =&}_pm;
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Consider also the Wiener amalgam space (see [Feich90)):

(3.5) W(Co,1!) = {f, f continuous and I fllw(roo 1y = z 5 - 141 llee < 00}
J

a space of functions that will be useful in the third version of the BL theorem.
Now we state the "weak”, ”strong” and ”amalgam” versions of the BL theorem
for L?(R, C™) (in the terminology of [ BHW95)):

LEMMA 3.1 (weak BLT for L?(R,C")). Suppose g € L?(R,C") and o, €
RY such that II or III holds true and W, g is a Riesz basis for L3(R,C"). If

g is the generator of the biorthogonal Riesz basis then either g ¢ D(Q) N D(P) or
g ¢ D(Q)ND(P).

THEOREM 3.2 (strong BLT for L?(R,C")). Supposeg € L?*(R,C") and at,3 €
R such that II or IIT holds true and Wea, pgisa Riesz basis for L(R,C"). Then
g € D(Q)ND(P).

REMARK 3.3. As stated here, Theorem 3.2 is clearly stronger than Lemma 3.1.
However, the technique (due to Battle) used in the proof of Lemma 3.1 also leads
to a similar conclusion under slighty weaker conditions on g, when the hypotheses
of Theorem 3.2 no longer hold true.

THEOREM 3.4 (amalgam BLT for L?(R, C")). Suppose g€ L*(R,C™) and o, B€E
R% such that III holds true and Wea,s 8 @ Riesz basis for L(R,C"). Then
g ¢ ®F ,W(Co,1') and g & ®f_,W(Co,1') (where the hat ~ stands for the Fourier
transform,).

And now the proofs:

ProoF oF LEMMA 3.1. The proof follows Battle’s idea and is essentially sim-
ilar to that given in his paper [Batt88] (see also [BHW95] or [DaJa93]).
For a € R* and g € L?(R,C") we define ag = (a141,.-. ,axgk), the compo-

nentwise multiplication. If a € RE we denote a™! = (a7l,...,axh).
The biorthogonality condition reads as:
(3.6)
Z <, w(ma,nB)g>w(mao,nB)g= Z <, w(ma,nB)g>w(ma,nB)g=1.2(r,c)
m,n m,n

Now suppose g, & € D(Q)ND(P). Then w(ma,nB)g, w(ma,nB)g € D(Q)ND(P)
and:

<Pa'g,QB7'g>
=Y < Pa7'g,w(ma,nf) g >< w(me,nB) g, QB & >

m,n

Y < a7lg, Pu(ma,nB)g >< Qu(ma,nB)g, B7'& >

m,n

On the other hand:
Pw(a,b) = w(a,b)P — 2raw(a,b) , Qu(a,b) = w(a, b)Q + bw(a, b)
Using biorthogonality:

< alg, —2mmaw(ma,nB) g > = —2rm < g, w(ma,nB) g >
= —27Mbm 00n0 =0
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Similarly:
< npw(ma,nB)g, B & >=n < w(ma,nP)g,g >=0
Therefore:
< Pa7'g,QB7'g>
=Y < a”'g,w(ma,nB)Pg >< w(ma,nB)Qg, A& >

mn

Z < w(—ma, —nﬂ)a_lg, Pg >< Qg,w(—ma, —n,@)ﬁ'lg >

m,n

The following commutators are straightforward
[w(avﬁ)ac] = [P»C] =[Q,c]=0
Therefore:

<Pa'g,QB7'g>
(3.7) =Y < B7'Qg w(ma,nP) & >< w(me,nB)g, o PE >

=<p'Qg,a ' Pg>=<Qa'g,PBE >

Now, we can find sequences (fn)nen, (hn)nen in ®5_,C5°(R) C D(P)ND(Q) C
L2(R,C") such that [|g—fx || — 0, [|E—hnl| — 0, | Pg—Pf,|| = 0, [ PE—=Phy[| = 0,
Qg — Qf.|| — 0, [|Q& — Q@h,|| — 0. On the one hand:

< Pa~f,,Q8 'h, > — < Qo 'f,, PB 'hy, >

=< [P,Qla" £, 8 'h, >=i < a 'f,, 87 h, >
On the other hand, since the scalar product is continuous, we get by passing to
limit and using (3.6):
(3.8) 0=i<alg,pB 'g>

In case IL, §7 = (S%Y)~1g and therefore (3.8) implies:
Ek: 1 w X
< J'7 SJ -1 5=0
a;f; g )

=1

Since (SW)_1 is a positive operator, each term is positive. Consequently each
¢’ = 0. Contradiction!
In case I, a™ 187" = >1 and thus (3.8) turns into:

0=<g (8")'g>
which again implies g = 0 and also a contradiction! O

PROOF OF THEOREM 3.2. The idea is to prove that g € D(P) N D(Q) implies
g € D(P) N D(Q) and then the conclusion follows from lemma 3.1.

Firstly we consider the case II. Since SW = @h_,89m; we get that g = of_,¢%,
i.e. the standard dual of W g, is obtained as a direct sum of the standard duals
of each component frame. Thus the problem reduces to a ”"scalar” WH frame:
given g € L*(R) and a, B > 0 prove that if W.q,5 is a frame and g € D(p) N D(q)
then the generator of the standard dual has the same smoothness and decay, i.e.
§ € D(p) N D(q). We prove one more ingredient for this, namely af is rational.
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. Indeed, suppose that not all v; = a;8; are rational. This together with
> j=1a;0; = 1 (since Wea, gisa Riesz basis) would imply that there are two
labels j # I such that «; — v, is irrational. From orthogonality we get:

Z < f,w(ma;,nB;)g >< w(may,nB)g',h’ >=0, Vf,h' € L*(R)

m,n
For f' = w(moa;,noB;)f and h' = w(meay, nofr)h we get:

Zei‘n(mon—mno)(’ﬁ_'ﬁ) < f,W(maj,nﬁj)gj S< W(maz,nﬁz)gl, h>=0

m,n

Vf,h € L2(R),mg,no € Z. Let us denote by

Cn = Zeiwmno(w—lﬂ) < f,w(ma;,nB;)g’ >< w(mou,nB)g',h >
m

It is easy to check that ¢ € [1(Z). Now consider the complex-valued function
t— Ft) =, e?™"c,. We know that F(moXz2) =0, Ymg € Z. Since F is
1-periodic and continuous and the set {mo2;%mod1 ; mo € Z} is dense in [0,1]
we get that F = 0. Thus ¢, = 0, Vn. Applying a similar argument, but now with
no as a free-parameter we obtain < f,w(may,nB;)g’ >< w(mai,nB)g',h >= 0
Vf,h € L*(R), m,n € Z which means ||g’|| - ||g'|| = 0 and this is a contradiction
with the assumption that W, o B is a frame in L2(R,C"). Thus we proved that
all 7;’s should be rational.

Now we come back to our problem: to prove that if g € D(p) N D(q) then
§ € D(p) N D(q) also. Suppose now that vy = a8 = g for p,g € N, (p,q) =1 (i.e.
they are relatively prime). We shall use the Zak transform of g defined as:

1 omikt 1S +k 2
L S emmgttE) ger2(m)
Ve s @

where O = [0,1] x [0, 1] (for more results about the Zak transform see [Daub90]).

For the dual we shall denote by G the Zak transform of §. We also introduce the
following notations:

(3.9) G(t,s) =

G(t,5) _Gt,s)
G(t+ 39 - G(t+1,s)
(3.10) G(t,s) = . , G(t,s) = _
G(t'*'g‘;—l’s) é(t+.9;—1,s)
p-1—— .
(3.11) S(t,s) = ;)G(t, s+ %’)Gf(t,s + ’;“)

Thus G(t, s) is a g-vector of functions whereas S(t, s) is a ¢ x ¢ matrix whose entries
are:

-1 j -1 j
s+ 26+ s+
q p q p

p—1
(3.12) Sir(t,8) = > _ Gt +

It is known (see [ZiZe93]) that G = ¢S~!G and the frame condition reduces to
the operational condition AI < S(t,s) < BI for a.e. (t,s) € O. This implies



